A Microgrid Energy Management System Based on Non-Intrusive Load Monitoring Via Multitask Learning

dc.contributor.author Çimen, Halil
dc.contributor.author Çetinkaya, Nurettin
dc.contributor.author Vasquez, Juan C.
dc.contributor.author Guerrero, Josep M.
dc.date.accessioned 2021-12-13T10:24:07Z
dc.date.available 2021-12-13T10:24:07Z
dc.date.issued 2021
dc.description.abstract Non-intrusive load monitoring (NILM) enables to understand the appliance-level behavior of the consumers by using only smart meter data, and it mitigates the requirements such as high-cost sensors, maintenance/update and provides a cost-effective solution. This article presents an efficient NILM-based energy management system (EMS) for residential microgrids. Firstly, smart meter data are analyzed with a multi-task deep neural network-based approach and the appliance-level information of the consumers is extracted. Both consumption and operating status of the appliances are obtained. Afterward, the energy consumption behaviors of the end-users are analyzed using these data. Accordingly, average power consumption, operation cycles, preferred usage periods, and daily usage frequency of the appliances were obtained with an average accuracy of more than 90%. The obtained results were integrated into an EMS to create an efficient and user-centered microgrid operation. The developed model not only provided the optimum dispatch of distributed generation plants in the microgrid but also scheduled the controllable loads taking into account customers' satisfaction. It was demonstrated with the help of simulation that the proposed NILM-based EMS model improves the operation cost/customer satisfaction ratio between 45% and 65% compared to a traditional EMS. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2214 International Doctoral Research Fellowship ProgrammeTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); VILLUM FONDEN [25920]; Aalborg University Talent Project-The Energy Internet-Integrating Internet of Things Into the Smart Grid [771116] en_US
dc.description.sponsorship This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2214 International Doctoral Research Fellowship Programme; in part by the VILLUM FONDEN under the VILLUM Investigator under Grant 25920 [Center for Research on Microgrids (CROM)]; and in part by the Aalborg University Talent Project-The Energy Internet-Integrating Internet of Things Into the Smart Grid under Grant 771116. en_US
dc.identifier.doi 10.1109/TSG.2020.3027491
dc.identifier.issn 1949-3053
dc.identifier.issn 1949-3061
dc.identifier.scopus 2-s2.0-85100324779
dc.identifier.uri https://doi.org/10.1109/TSG.2020.3027491
dc.identifier.uri https://hdl.handle.net/20.500.13091/377
dc.language.iso en en_US
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en_US
dc.relation.ispartof IEEE TRANSACTIONS ON SMART GRID en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Home appliances en_US
dc.subject Hidden Markov models en_US
dc.subject Energy management en_US
dc.subject Monitoring en_US
dc.subject Smart meters en_US
dc.subject Energy consumption en_US
dc.subject Microgrids en_US
dc.subject Non-intrusive load monitoring en_US
dc.subject microgrid en_US
dc.subject energy management en_US
dc.subject recurrent neural network en_US
dc.subject deep learning en_US
dc.title A Microgrid Energy Management System Based on Non-Intrusive Load Monitoring Via Multitask Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Vasquez, Juan C./0000-0001-6332-385X
gdc.author.scopusid 57205614115
gdc.author.scopusid 10739795700
gdc.author.scopusid 57203104097
gdc.author.scopusid 35588010400
gdc.author.wosid Vasquez, Juan C./J-2247-2014
gdc.author.wosid Guerrero, Josep/D-5519-2014
gdc.bip.impulseclass C2
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 987 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 977 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3090610511
gdc.identifier.wos WOS:000623420700007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 107.0
gdc.oaire.influence 8.826867E-9
gdc.oaire.isgreen true
gdc.oaire.keywords microgrid
gdc.oaire.keywords energy management
gdc.oaire.keywords Non-intrusive load monitoring
gdc.oaire.keywords deep learning
gdc.oaire.keywords recurrent neural network
gdc.oaire.popularity 9.157573E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 9.91864163
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 117
gdc.plumx.crossrefcites 22
gdc.plumx.mendeley 176
gdc.plumx.scopuscites 152
gdc.scopus.citedcount 147
gdc.virtual.author Çetinkaya, Nurettin
gdc.virtual.author Çimen, Halil
gdc.wos.citedcount 113
relation.isAuthorOfPublication fa2ce062-2c2c-4404-92f7-9e50092bf335
relation.isAuthorOfPublication d6f62538-2dd4-40ea-b407-99a0c3c045d1
relation.isAuthorOfPublication.latestForDiscovery fa2ce062-2c2c-4404-92f7-9e50092bf335

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A_Microgrid_Energy_Management_System_Based_on_Non-Intrusive_Load_Monitoring_via_Multitask_Learning.pdf
Size:
2 MB
Format:
Adobe Portable Document Format