Quantitative Analysis of Eeg Slow Wave Activity Based on Minpeakprominence Method

dc.contributor.author Yıldırım, Sema
dc.contributor.author Koçer, Hasan Erdinç
dc.contributor.author Ekmekçi, Ahmet Hakan
dc.date.accessioned 2021-12-13T10:41:32Z
dc.date.available 2021-12-13T10:41:32Z
dc.date.issued 2021
dc.description.abstract Persistent, unchanging, and non-reactive focal or generalized abnormal Slow Wave (SW) activities in an awake adult patient are examined pathologically. Although these waves in Electroencephalogram (EEG) are much less prominent than transient activities in some areas, it is not possible to understand them easily by looking at the EEG. For this reason, reliable computer programs that can sort out Slow Waves (SWs) correctly are needed. In this study, a new method based on MinPeakProminence that can detect abnormal SW activities was developed. To test the performance of the study, the data collected from Selcuk University Hospital (22 subjects - epilepsy and various neurological diseases) and Bonn Hospital (only normal A dataset) were used. Various statistical performance measurement methods were used to search the results. The results of this analysis revealed that the classification success, sensitivity and specificity values obtained with the SUH dataset were 96.5%, 93.3% and 96.1%, respectively. In the results of the experiments made with the Bonn dataset, 100% classification success was achieved. Besides, according to the analyses, it was found that SWs are frequently seen in the posterior regions of the brain, especially in the parietal and occipital regions in the SUH dataset. en_US
dc.identifier.doi 10.18280/ts.380323
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85111776693
dc.identifier.uri https://doi.org/10.18280/ts.380323
dc.identifier.uri https://hdl.handle.net/20.500.13091/1558
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Electroencephalogram en_US
dc.subject Slow Wave en_US
dc.subject Peak en_US
dc.subject Minpeakprominence en_US
dc.subject Epilepsy en_US
dc.subject Neurologic Disorder en_US
dc.subject Complex Partial Seizures en_US
dc.subject Epileptic Seizures en_US
dc.subject International-Bureau en_US
dc.subject Classification en_US
dc.subject Ilae en_US
dc.subject League en_US
dc.subject Spike en_US
dc.title Quantitative Analysis of Eeg Slow Wave Activity Based on Minpeakprominence Method en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57216826829
gdc.author.scopusid 57210655277
gdc.author.scopusid 57212059303
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 773 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 757 en_US
gdc.description.volume 38 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3184894247
gdc.identifier.wos WOS:000681761900023
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5317246E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.0500908E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 0.40283417
gdc.openalex.normalizedpercentile 0.56
gdc.opencitations.count 2
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
38.03_23.pdf
Size:
2.45 MB
Format:
Adobe Portable Document Format