A New Memetic Global and Local Search Algorithm for Solving Hybrid Flow Shop With Multiprocessor Task Scheduling Problem

dc.contributor.author Engin, Batuhan Eren
dc.contributor.author Engin, Orhan
dc.date.accessioned 2021-12-13T10:26:53Z
dc.date.available 2021-12-13T10:26:53Z
dc.date.issued 2020
dc.description.abstract Hybrid flow shop (HFS) scheduling problem is combining of the flow shop and parallel machine scheduling problem. Hybrid flow shop with multiprocessor task (HFSMT) scheduling problem is a special structure of the hybrid flow shop scheduling problem. The HFSMT scheduling is a well-known NP-hard problem. In this study, a new memetic algorithm which combined the global and local search methods is proposed to solve the HFSMT scheduling problems. The developed new memetic global and local search (MGLS) algorithm consists of four operators. These are natural selection, crossover, mutation and local search methods. A preliminary test is performed to set the best values of these developed new MGLS algorithm operators for solving HFSMT scheduling problem. The best values of the MGLS algorithm operators are determined by a full factorial experimental design. The proposed new MGLS algorithm is applied the 240 HFSMT scheduling instances from the literature. The performance of the generated new MGLS algorithm is compared with the genetic algorithm (GA), parallel greedy algorithm (PGA) and efficient genetic algorithm (EGA) which are used in the previous studies to solve the same set of HFSMT scheduling benchmark instances from the literature. The results show that the proposed new MGLS algorithm provides better makespan than the other algorithms for HFSMT scheduling instances. The developed new MGLS algorithm could be applicable to practical production environment. en_US
dc.identifier.doi 10.1007/s42452-020-03895-5
dc.identifier.issn 2523-3963
dc.identifier.issn 2523-3971
dc.identifier.scopus 2-s2.0-85100737192
dc.identifier.uri https://doi.org/10.1007/s42452-020-03895-5
dc.identifier.uri https://hdl.handle.net/20.500.13091/540
dc.language.iso en en_US
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG en_US
dc.relation.ispartof SN APPLIED SCIENCES en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Hybrid Flow Shop Scheduling en_US
dc.subject Multiprocessor Task en_US
dc.subject Memetic Algorithm en_US
dc.subject Local Search en_US
dc.subject Makespan en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Ant Colony Optimization en_US
dc.subject Genetic Algorithm en_US
dc.subject 2-Stage en_US
dc.subject System en_US
dc.title A New Memetic Global and Local Search Algorithm for Solving Hybrid Flow Shop With Multiprocessor Task Scheduling Problem en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Engin, Orhan/0000-0002-7250-0317
gdc.author.scopusid 56825544300
gdc.author.scopusid 55948252100
gdc.author.wosid Engin, Orhan/AAG-6283-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.volume 2 en_US
gdc.identifier.openalex W3108395695
gdc.identifier.wos WOS:000593951800005
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0457985E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.1325502E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.63924363
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 9
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.virtual.author Engin, Orhan
gdc.wos.citedcount 8
relation.isAuthorOfPublication 40e3d4e9-243f-4b10-8413-a3db7bbf017c
relation.isAuthorOfPublication.latestForDiscovery 40e3d4e9-243f-4b10-8413-a3db7bbf017c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Engin-Engin2020_Article_ANewMemeticGlobalAndLocalSearc.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format