Intelligent Detection of Deterioration in Cultural Stone Heritage

dc.contributor.author Hatır, Mehmet Ergün
dc.contributor.author İnce, İsmail
dc.contributor.author Korkanç, Mustafa
dc.date.accessioned 2021-12-13T10:29:50Z
dc.date.available 2021-12-13T10:29:50Z
dc.date.issued 2021
dc.description.abstract Vision-based periodic examination of the deterioration of stone monuments over time is labour and time intensive. Especially, in cases involving large-scale immovable cultural heritage, the workforce is considerably increased, along with the possibility of occurrence of errors. Any misdiagnoses in the deterioration may cause irreversible structural problems in monuments, and thus, it is necessary to develop alternative examination methods. Computer-vision methods represent an effective solution to eliminate both human errors and difficulties in the field. Therefore, this study aims to adopt the Mask R-CNN algorithm, which is a computer-vision method, to detect and map the deteriorations observed in the Gumus, ler archaeological site and monastery (cracks, discontinuities, contour scaling, missing parts, biological colonization, presence of higher plants, de-posits, efflorescence, and loss of fresco). First, 1740 images were collected from the site, and the model was trained by labelling the distortions in these images according to their types. Later, the model was tested on four outdoor and two indoor views. The developed model achieved an average precision ranging between 91.591% and 100%, and the mean average precision was 98.186%. These results demonstrated that the proposed algorithm can enable mapping to promptly and automatically detect the deterioration in large monuments. en_US
dc.identifier.doi 10.1016/j.jobe.2021.102690
dc.identifier.issn 2352-7102
dc.identifier.scopus 2-s2.0-85105824897
dc.identifier.uri https://doi.org/10.1016/j.jobe.2021.102690
dc.identifier.uri https://hdl.handle.net/20.500.13091/704
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof JOURNAL OF BUILDING ENGINEERING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Gumus, Ler Monastery en_US
dc.subject Stone Deterioration en_US
dc.subject Deterioration Map en_US
dc.subject Maskr-Cnn en_US
dc.subject Historical Buildings en_US
dc.subject Stratigraphy en_US
dc.subject Damage en_US
dc.title Intelligent Detection of Deterioration in Cultural Stone Heritage en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57202445804
gdc.author.scopusid 16555121900
gdc.author.scopusid 6507922031
gdc.author.wosid ince, ismail/AAA-3236-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Jeoloji Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 102690
gdc.description.volume 44 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3163089078
gdc.identifier.wos WOS:000709125900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 31.0
gdc.oaire.influence 5.5105307E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Stone deterioration
gdc.oaire.keywords Deterioration map
gdc.oaire.keywords MaskR-CNN
gdc.oaire.keywords Gumus, ler monastery
gdc.oaire.popularity 3.5671622E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 12.51460999
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 29
gdc.plumx.crossrefcites 42
gdc.plumx.mendeley 66
gdc.plumx.scopuscites 54
gdc.scopus.citedcount 54
gdc.virtual.author İnce, İsmail
gdc.wos.citedcount 40
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication.latestForDiscovery aaab0c06-ea61-47ae-a2ea-5444b260751d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S2352710221005489-main.pdf
Size:
40.88 MB
Format:
Adobe Portable Document Format