Modified Region Growing Method for Image Segmentation Using Ant Lion Optimization Algorithm

dc.contributor.author Jama, Bashir Sheikh Abdullahi
dc.contributor.author Akhan Baykan, Nurdan
dc.date.accessioned 2023-01-08T19:04:20Z
dc.date.available 2023-01-08T19:04:20Z
dc.date.issued 2020
dc.description.abstract Image segmentation is a significant step in image processing that applies to various fields. These fields include machine vision, object detection, astronomy, biometric recognition systems (face, fingerprint, plate, and eye), medical imaging, video surveillance, and many other image-based technologies. Efficient image segmentation is one of the most important tasks and critical roles in automatic image processing. Especially in engineering studies, finding the most suitable solutions for problems is one of the important research topics. Bio-inspired algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Bat Algorithm (BAT), etc. are used to find the optimal solutions in search spaces and Ant Lion Optimization (ALO) is one of these algorithms. In recent years, bio-inspired algorithms are used to optimize the segmentation parameters of the images. This research proposes a modified region growing (RG) image segmentation approach using bio-inspired ALO. Region growing (RG) has three main problems as the selection of the right seeds, the number of seeds, and the region growing strategy. Therefore, ALO was used to solve seed selection problems in RG. In this study, firstly, the median filter was applied to the inputs to improve the quality of the images. Subsequently, the region growing segmentation was carried out using optimal seed points obtained from the ALO. For obtaining the optimal seeds, ALO was used to solve the limitations of RG during the segmentation process. The success of the proposed approach was tested using some images taken from the BSDS300 (Berkeley) dataset. The experimental results show that the proposed method segments almost all the images. en_US
dc.identifier.doi 10.31590/ejosat.812052
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.812052
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1136056
dc.identifier.uri https://hdl.handle.net/20.500.13091/3254
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Region growing en_US
dc.subject Seed point selection en_US
dc.subject Image Segmentation en_US
dc.subject pre-processing en_US
dc.subject Ant Lion Optimization Bölge büyütme en_US
dc.subject tohum seçimi en_US
dc.subject görüntü bölütleme en_US
dc.subject önişleme en_US
dc.subject Karınca Aslan Optimizasyonu en_US
dc.title Modified Region Growing Method for Image Segmentation Using Ant Lion Optimization Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Akhan Baykan, Nurdan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 411 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 404 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3094098213
gdc.identifier.trdizinid 1136056
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5950233E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Bölge büyütme;tohum seçimi;görüntü bölütleme;önişleme;Karınca Aslan Optimizasyonu
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Region growing;Seed point selection;Image Segmentation;pre-processing;Ant Lion Optimization
gdc.oaire.popularity 2.1256188E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.18213818
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 7
gdc.virtual.author Baykan, Nurdan
relation.isAuthorOfPublication 81dff1ca-db16-4103-b9cb-612ae1600b38
relation.isAuthorOfPublication.latestForDiscovery 81dff1ca-db16-4103-b9cb-612ae1600b38

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31590-ejosat.812052-1350349.pdf
Size:
888.98 KB
Format:
Adobe Portable Document Format