Histological Tissue Classification With a Novel Statistical Filter-Based Convolutional Neural Network

dc.contributor.author Ünlükal, Nejat
dc.contributor.author Ülker, Erkan
dc.contributor.author Solmaz, Merve
dc.contributor.author Uyar, Kübra
dc.contributor.author Tasdemir, Sakir
dc.date.accessioned 2024-07-21T18:44:28Z
dc.date.available 2024-07-21T18:44:28Z
dc.date.issued 2024
dc.description.abstract Deep networks have been of considerable interest in literature and have enabled the solution of recent real-world applications. Due to filters that offer feature extraction, Convolutional Neural Network (CNN) is recognized as an accurate, efficient and trustworthy deep learning technique for the solution of image-based challenges. The high-performing CNNs are computationally demanding even if they produce good results in a variety of applications. This is because a large number of parameters limit their ability to be reused on central processing units with low performance. To address these limitations, we suggest a novel statistical filter-based CNN (HistStatCNN) for image classification. The convolution kernels of the designed CNN model were initialized by continuous statistical methods. The performance of the proposed filter initialization approach was evaluated on a novel histological dataset and various histopathological benchmark datasets. To prove the efficiency of statistical filters, three unique parameter sets and a mixed parameter set of statistical filters were applied to the designed CNN model for the classification task. According to the results, the accuracy of GoogleNet, ResNet18, ResNet50 and ResNet101 models were 85.56%, 85.24%, 83.59% and 83.79%, respectively. The accuracy was improved by 87.13% by HistStatCNN for the histological data classification task. Moreover, the performance of the proposed filter generation approach was proved by testing on various histopathological benchmark datasets, increasing average accuracy rates. Experimental results validate that the proposed statistical filters enhance the performance of the network with more simple CNN models. en_US
dc.identifier.doi 10.1111/ahe.13073
dc.identifier.issn 0340-2096
dc.identifier.issn 1439-0264
dc.identifier.scopus 2-s2.0-85196122824
dc.identifier.uri https://doi.org/10.1111/ahe.13073
dc.identifier.uri https://hdl.handle.net/20.500.13091/5871
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Anatomia histologia embryologia en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject artificial intelligence en_US
dc.subject CNN en_US
dc.subject deep learning en_US
dc.subject feature extraction en_US
dc.subject image classification en_US
dc.subject statistical filter en_US
dc.subject Parameter en_US
dc.title Histological Tissue Classification With a Novel Statistical Filter-Based Convolutional Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id UNLUKAL, NEJAT/0000-0002-8107-4882
gdc.author.institutional
gdc.author.scopusid 24399959700
gdc.author.scopusid 23393979800
gdc.author.scopusid 57188621969
gdc.author.scopusid 57193266558
gdc.author.scopusid 23767567700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Unlukal, Nejat; Solmaz, Merve] Selcuk Univ, Dept Histol & Embryol, Konya, Turkiye; [Ulker, Erkan] Konya Tech Univ, Dept Comp Engn, Konya, Turkiye; [Uyar, Kubra] Alanya Alaaddin Keykubat Univ, Dept Comp Engn, Antalya, Turkiye; [Tasdemir, Sakir] Selcuk Univ, Dept Comp Engn, Konya, Turkiye; [Unlukal, Nejat] Selcuk Univ, Fac Med, Dept Histol & Embryol, TR-42130 Konya, Turkiye en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 53 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4399644239
gdc.identifier.pmid 38868912
gdc.identifier.wos WOS:001244683800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5227749E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Image Processing, Computer-Assisted
gdc.oaire.keywords Humans
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 3.1311136E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.63877855
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Ülker, Erkan
gdc.wos.citedcount 1
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files