Hvionet: a Deep Learning Based Hybrid Visual-Inertial Odometry Approach for Unmanned Aerial System Position Estimation

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Durdu, Akif
dc.contributor.author Yusefi, Abdullah
dc.contributor.author Yılmaz, Alper
dc.date.accessioned 2022-11-28T16:54:43Z
dc.date.available 2022-11-28T16:54:43Z
dc.date.issued 2022
dc.description.abstract Sensor fusion is used to solve the localization problem in autonomous mobile robotics applications by integrating complementary data acquired from various sensors. In this study, we adopt Visual- Inertial Odometry (VIO), a low-cost sensor fusion method that integrates inertial data with images using a Deep Learning (DL) framework to predict the position of an Unmanned Aerial System (UAS). The developed system has three steps. The first step extracts features from images acquired from a platform camera and uses a Convolutional Neural Network (CNN) to project them to a visual feature manifold. Next, temporal features are extracted from the Inertial Measurement Unit (IMU) data on the platform using a Bidirectional Long Short Term Memory (BiLSTM) network and are projected to an inertial feature manifold. The final step estimates the UAS position by fusing the visual and inertial feature manifolds via a BiLSTM-based architecture. The proposed approach is tested with the public EuRoC (European Robotics Challenge) dataset and simulation environment data generated within the Robot Operating System (ROS). The result of the EuRoC dataset shows that the proposed approach achieves successful position estimations comparable to previous popular VIO methods. In addition, as a result of the experiment with the simulation dataset, the UAS position is successfully estimated with 0.167 Mean Square Error (RMSE). The obtained results prove that the proposed deep architecture is useful for UAS position estimation. (c) 2022 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.neunet.2022.09.001
dc.identifier.issn 0893-6080
dc.identifier.issn 1879-2782
dc.identifier.scopus 2-s2.0-85138452774
dc.identifier.uri https://doi.org/10.1016/j.neunet.2022.09.001
dc.identifier.uri https://doi.org/10.1016/j.neunet.2022.09.001
dc.identifier.uri https://hdl.handle.net/20.500.13091/3158
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Neural Networks en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject BiLSTM en_US
dc.subject IMU en_US
dc.subject RNN en_US
dc.subject ROS en_US
dc.subject UAS en_US
dc.subject VIO en_US
dc.subject Unknown Environments en_US
dc.subject Bidirectional Lstm en_US
dc.subject Slam en_US
dc.subject Vision en_US
dc.subject Stereo en_US
dc.subject Robust en_US
dc.subject Networks en_US
dc.subject Fusion en_US
dc.subject Filter en_US
dc.title Hvionet: a Deep Learning Based Hybrid Visual-Inertial Odometry Approach for Unmanned Aerial System Position Estimation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.id Yusefi, Abdullah/0000-0001-7557-8526
gdc.author.id ASLAN, Muhammet Fatih/0000-0001-7549-0137
gdc.author.institutional Durdu, Akif
gdc.author.scopusid 57205362915
gdc.author.scopusid 55364612200
gdc.author.scopusid 57221601191
gdc.author.scopusid 57067174700
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.author.wosid Yusefi, Abdullah/GVT-0630-2022
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 474 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 461 en_US
gdc.description.volume 155 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4296430790
gdc.identifier.pmid 36152378
gdc.identifier.wos WOS:000867366000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 38.0
gdc.oaire.influence 4.7599586E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Robotics
gdc.oaire.keywords Reactive Oxygen Species
gdc.oaire.keywords Memory, Long-Term
gdc.oaire.popularity 3.139407E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 15.89449577
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 30
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 31
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 43
gdc.scopus.citedcount 42
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 36
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0893608022003355-main.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format