A K-Elm Approach To the Prediction of Number of Students Taking Make-Up Exams
| dc.contributor.author | Kıran, Mustafa Servet | |
| dc.contributor.author | Sıramkaya, Eyup | |
| dc.contributor.author | Esme, Engin | |
| dc.date.accessioned | 2022-01-30T17:32:54Z | |
| dc.date.available | 2022-01-30T17:32:54Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Purpose: The main objective of this study is to present a novel problem, and novel methodology to solve this problem. The problem is to predict the number of students who fail the course and will join the make-up exams. Theory and Methods: The number of students who fail the course should take a make-up exam, but some of them do not join these exams due to internal or external motivations, and this causes waste of resources. Majority of voting-based extreme learning machines have been proposed to solve the problem, and the ELM parameters have been optimized by artificial bee colony algorithm. Results: The proposed approach shows better performance than the extreme learning machines in terms of classification accuracy. Conclusion: Before the scheduling make-up exams, the number of students who will join the exams should be predicted by the proposed or similar approaches in order to use resources efficiently. | en_US |
| dc.identifier.doi | 10.17341/gazimmfd.890180 | |
| dc.identifier.issn | 1300-1884 | |
| dc.identifier.issn | 1304-4915 | |
| dc.identifier.scopus | 2-s2.0-85119937060 | |
| dc.identifier.uri | https://doi.org/10.17341/gazimmfd.890180 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/1691 | |
| dc.language.iso | en | en_US |
| dc.publisher | Gazi Univ, Fac Engineering Architecture | en_US |
| dc.relation.ispartof | Journal Of The Faculty Of Engineering And Architecture Of Gazi University | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Extreme Learning Machine | en_US |
| dc.subject | Multiple Extreme Learning Machine | en_US |
| dc.subject | Artificial Bee Colony | en_US |
| dc.subject | Make-Up Exam | en_US |
| dc.subject | Extreme Learning-Machine | en_US |
| dc.title | A K-Elm Approach To the Prediction of Number of Students Taking Make-Up Exams | en_US |
| dc.title.alternative | Bütünleme Sınavına Girecek Öğrenci Sayısının Tahmini için K-elm Yaklaşımı | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 54403096500 | |
| gdc.author.scopusid | 55873033200 | |
| gdc.author.scopusid | 57189468408 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 304 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 295 | en_US |
| gdc.description.volume | 37 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W3214033364 | |
| gdc.identifier.trdizinid | 1064167 | |
| gdc.identifier.wos | WOS:000718898200014 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | Mühendislik | |
| gdc.oaire.keywords | Aşırı öğrenme makinesi;Çoklu aşırı öğrenme makinesi;Yapay arı kolonisi;bütünleme sınavı | |
| gdc.oaire.popularity | 1.5483943E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.17 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Eşme, Engin | |
| gdc.virtual.author | Kıran, Mustafa Servet | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6 | |
| relation.isAuthorOfPublication | 1b4c0009-61df-4135-a8d5-ed32324e2787 | |
| relation.isAuthorOfPublication.latestForDiscovery | c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 10.17341-gazimmfd.890180-1614479.pdf
- Size:
- 388.15 KB
- Format:
- Adobe Portable Document Format
