A K-Elm Approach To the Prediction of Number of Students Taking Make-Up Exams

dc.contributor.author Kıran, Mustafa Servet
dc.contributor.author Sıramkaya, Eyup
dc.contributor.author Esme, Engin
dc.date.accessioned 2022-01-30T17:32:54Z
dc.date.available 2022-01-30T17:32:54Z
dc.date.issued 2022
dc.description.abstract Purpose: The main objective of this study is to present a novel problem, and novel methodology to solve this problem. The problem is to predict the number of students who fail the course and will join the make-up exams. Theory and Methods: The number of students who fail the course should take a make-up exam, but some of them do not join these exams due to internal or external motivations, and this causes waste of resources. Majority of voting-based extreme learning machines have been proposed to solve the problem, and the ELM parameters have been optimized by artificial bee colony algorithm. Results: The proposed approach shows better performance than the extreme learning machines in terms of classification accuracy. Conclusion: Before the scheduling make-up exams, the number of students who will join the exams should be predicted by the proposed or similar approaches in order to use resources efficiently. en_US
dc.identifier.doi 10.17341/gazimmfd.890180
dc.identifier.issn 1300-1884
dc.identifier.issn 1304-4915
dc.identifier.scopus 2-s2.0-85119937060
dc.identifier.uri https://doi.org/10.17341/gazimmfd.890180
dc.identifier.uri https://hdl.handle.net/20.500.13091/1691
dc.language.iso en en_US
dc.publisher Gazi Univ, Fac Engineering Architecture en_US
dc.relation.ispartof Journal Of The Faculty Of Engineering And Architecture Of Gazi University en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Extreme Learning Machine en_US
dc.subject Multiple Extreme Learning Machine en_US
dc.subject Artificial Bee Colony en_US
dc.subject Make-Up Exam en_US
dc.subject Extreme Learning-Machine en_US
dc.title A K-Elm Approach To the Prediction of Number of Students Taking Make-Up Exams en_US
dc.title.alternative Bütünleme Sınavına Girecek Öğrenci Sayısının Tahmini için K-elm Yaklaşımı en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 54403096500
gdc.author.scopusid 55873033200
gdc.author.scopusid 57189468408
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 304 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 295 en_US
gdc.description.volume 37 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3214033364
gdc.identifier.trdizinid 1064167
gdc.identifier.wos WOS:000718898200014
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Aşırı öğrenme makinesi;Çoklu aşırı öğrenme makinesi;Yapay arı kolonisi;bütünleme sınavı
gdc.oaire.popularity 1.5483943E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.17
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Eşme, Engin
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 0
relation.isAuthorOfPublication c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.17341-gazimmfd.890180-1614479.pdf
Size:
388.15 KB
Format:
Adobe Portable Document Format