Improving Artificial Algae Algorithm Performance by Predicting Candidate Solution Quality

dc.contributor.author Yibre, Abdulkerim Mohammed
dc.contributor.author Koçer, Barış
dc.date.accessioned 2021-12-13T10:41:30Z
dc.date.available 2021-12-13T10:41:30Z
dc.date.issued 2020
dc.description.abstract The success of optimization algorithms is most of the time directly proportional to the number of fitness evaluations. However, not all fitness evaluations lead to successful fitness updates. Besides, the maximum number of fitness evaluations is limited and also balance of exploration and exploitation is still challenging. Best possible solution should be found in a reasonable time. Surely it can be said more fitness evaluation takes more time. Since methods are tested under fixed numbers of maximum fitness evaluation and the duration of each fitness evaluation of a problem may vary depending on the characteristic of the problem, finding best result with fewer fitness evaluations is challenging in optimization algorithms. For that reason in this study, we proposed a new method that predicts the quality of a candidate solution before evaluation of its fitness employing Gaussian-based Naive Bayes probabilistic model. If the candidate solution is predicted to generate good result then that solution is evaluated by the objective function. Otherwise new candidate solution is created as usual. The primary purpose of the proposed method is improving the performance of AAA and at the same time preventing unnecessary fitness evaluation. The proposed method is evaluated using standard benchmark functions and CEC'05 test suite. The obtained results suggests that the new method outperformed the basic AAA and other state-of-the-art meta-heuristic algorithms with fewer fitness evaluations. Thus, the new method can be extended to cost sensitive industrial problems. (c) 2020 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.eswa.2020.113298
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.scopus 2-s2.0-85079622205
dc.identifier.uri https://doi.org/10.1016/j.eswa.2020.113298
dc.identifier.uri https://hdl.handle.net/20.500.13091/1542
dc.language.iso en en_US
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD en_US
dc.relation.ispartof EXPERT SYSTEMS WITH APPLICATIONS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Swarm Intelligence en_US
dc.subject Artificial Algae Algorithm en_US
dc.subject Naive Bayes en_US
dc.subject Candidate Solution Prediction en_US
dc.subject Particle Swarm Optimizer en_US
dc.subject Bee Colony Algorithm en_US
dc.subject Text Classification en_US
dc.subject Naive Bayes en_US
dc.title Improving Artificial Algae Algorithm Performance by Predicting Candidate Solution Quality en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57210369920
gdc.author.scopusid 35786168500
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 113298
gdc.description.volume 150 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3006358583
gdc.identifier.wos WOS:000528193700018
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.7100553E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.296222E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.58743819
gdc.openalex.normalizedpercentile 0.72
gdc.opencitations.count 3
gdc.plumx.crossrefcites 4
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0957417420301238-main.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format