Adrenal Tumor Segmentation Method for Mr Images

dc.contributor.author Barstuğan, Mücahid
dc.contributor.author Ceylan, Rahime
dc.contributor.author Asoğlu, Semih
dc.contributor.author Cebeci, Hakan
dc.contributor.author Koplay, Mustafa
dc.date.accessioned 2021-12-13T10:23:53Z
dc.date.available 2021-12-13T10:23:53Z
dc.date.issued 2018
dc.description.abstract Background and objective: Adrenal tumors, which occur on adrenal glands, are incidentally determined. The liver, spleen, spinal cord, and kidney surround the adrenal glands. Therefore, tumors on the adrenal glands can be adherent to other organs. This is a problem in adrenal tumor segmentation. In addition, low contrast, non-standardized shape and size, homogeneity, and heterogeneity of the tumors are considered as problems in segmentation. Methods: This study proposes a computer-aided diagnosis (CAD) system to segment adrenal tumors by eliminating the above problems. The proposed hybrid method incorporates many image processing methods, which include active contour, adaptive thresholding, contrast limited adaptive histogram equalization (CLAHE), image erosion, and region growing. Results: The performance of the proposed method was assessed on 113 Magnetic Resonance (MR) images using seven metrics: sensitivity, specificity, accuracy, precision, Dice Coefficient, Jaccard Rate, and structural similarity index (SSIM). The proposed method eliminates some of the discussed problems with success rates of 74.84%, 99.99%, 99.84%, 93.49%, 82.09%, 71.24%, 99.48% for the metrics, respectively. Conclusions: This study presents a new method for adrenal tumor segmentation, and avoids some of the problems preventing accurate segmentation, especially for cyst-based tumors. (C) 2018 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.cmpb.2018.07.009
dc.identifier.issn 0169-2607
dc.identifier.issn 1872-7565
dc.identifier.scopus 2-s2.0-85050272714
dc.identifier.uri https://doi.org/10.1016/j.cmpb.2018.07.009
dc.identifier.uri https://hdl.handle.net/20.500.13091/227
dc.language.iso en en_US
dc.publisher ELSEVIER IRELAND LTD en_US
dc.relation.ispartof COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adrenal Tumor Segmentation en_US
dc.subject Cad System en_US
dc.subject Hybrid Approach en_US
dc.subject Mr Images en_US
dc.subject Ct en_US
dc.subject Volumes en_US
dc.title Adrenal Tumor Segmentation Method for Mr Images en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57200139642
gdc.author.scopusid 12244684600
gdc.author.scopusid 57203019010
gdc.author.scopusid 56033553000
gdc.author.scopusid 55920818900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 100 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 87 en_US
gdc.description.volume 164 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2884770167
gdc.identifier.pmid 30195434
gdc.identifier.wos WOS:000443709500009
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.1605623E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Liver
gdc.oaire.keywords Image Interpretation, Computer-Assisted
gdc.oaire.keywords Abdominal Fat
gdc.oaire.keywords Adrenal Gland Neoplasms
gdc.oaire.keywords Humans
gdc.oaire.keywords Diagnosis, Computer-Assisted
gdc.oaire.keywords Magnetic Resonance Imaging
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 8.250944E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 0.43314762
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 7
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 18
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.virtual.author Ceylan, Rahime
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 9
relation.isAuthorOfPublication db1f6849-0679-4c3f-8bb5-fcfb40beb531
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery db1f6849-0679-4c3f-8bb5-fcfb40beb531

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0169260718308538-main.pdf
Size:
4.71 MB
Format:
Adobe Portable Document Format