An Accurate and Novel Numerical Simulation With Convergence Analysis for Nonlinear Partial Differential Equations of Burgers-Fisher Type Arising in Applied Sciences

dc.contributor.author Kürkçü, Ömür Kuvanc
dc.contributor.author Sezer, Mehmet
dc.date.accessioned 2022-01-30T17:32:58Z
dc.date.available 2022-01-30T17:32:58Z
dc.date.issued 2022
dc.description.abstract In this study, the second-order nonlinear partial differential equations of Burgers-Fisher type are considered under a unique formulation by introducing a novel highly accurate numerical method based on the Norlund rational polynomial and matrix-collocation computational system. The method aims to obtain a sustainable approach since it contains the rational structure of the Norlund polynomial. A unique computer program module, which involves very few routines, is constructed to discuss the precision and efficiency of the method and these few steps are described via an algorithm. A residual function is employed in both the error and convergence analyses with mean value theorem for double integrals. The considered equations in the numerical tests stand for model phenomena arising widely in applied sciences. Graphical and numerical comparisons provide a clear observation about the consistency of the method. All results prove that the method is highly accurate, eligible, and provides the ultimate operation for aforementioned problems. en_US
dc.identifier.doi 10.1515/ijnsns-2020-0040
dc.identifier.issn 1565-1339
dc.identifier.issn 2191-0294
dc.identifier.scopus 2-s2.0-85101383268
dc.identifier.uri https://doi.org/10.1515/ijnsns-2020-0040
dc.identifier.uri https://hdl.handle.net/20.500.13091/1737
dc.language.iso en en_US
dc.publisher Walter De Gruyter Gmbh en_US
dc.relation.ispartof International Journal Of Nonlinear Sciences And Numerical Simulation en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Error Analysis en_US
dc.subject Matrix-Collocation Method en_US
dc.subject Mean Value Theorem en_US
dc.subject Norlund Polynomial en_US
dc.subject Residual Function en_US
dc.subject Generalized Burger en_US
dc.subject Norlund en_US
dc.subject Huxley en_US
dc.subject Waves en_US
dc.subject Terms en_US
dc.title An Accurate and Novel Numerical Simulation With Convergence Analysis for Nonlinear Partial Differential Equations of Burgers-Fisher Type Arising in Applied Sciences en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kurkcu, Omur Kivanc/0000-0002-3987-7171
gdc.author.wosid Kurkcu, Omur Kivanc/AAQ-4682-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.endpage 114
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 97
gdc.description.volume 23
gdc.description.wosquality Q2
gdc.identifier.openalex W3130639765
gdc.identifier.wos WOS:000738253800003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4979034E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Nörlund polynomial
gdc.oaire.keywords KdV equations (Korteweg-de Vries equations)
gdc.oaire.keywords residual function
gdc.oaire.keywords matrix-collocation method
gdc.oaire.keywords mean value theorem
gdc.oaire.keywords error analysis
gdc.oaire.keywords Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
gdc.oaire.popularity 2.290097E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.02
gdc.opencitations.count 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Kürkçü, Ömür Kıvanç
gdc.wos.citedcount 1
relation.isAuthorOfPublication 496ebac1-5a78-4ae4-8148-e9bc97c6af22
relation.isAuthorOfPublication.latestForDiscovery 496ebac1-5a78-4ae4-8148-e9bc97c6af22

Files