An Efficient Retinal Blood Vessel Segmentation Using Morphological Operations

dc.contributor.author Özkaya, Umut
dc.contributor.author Öztürk, Şaban
dc.contributor.author Akdemir, B.
dc.contributor.author Seyfi, Leventl
dc.date.accessioned 2021-12-13T10:34:43Z
dc.date.available 2021-12-13T10:34:43Z
dc.date.issued 2018
dc.description 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) -- OCT 19-21, 2018 -- Kizilcahamam, TURKEY en_US
dc.description.abstract The structure of retinal vessel carries information about many diseases. It is difficult to analyze this complex structure by human eye. Additionally, it has time-consuming process. In this study, an extremely lower complex and more successful retinal blood vessel segmentation method is proposed via using morphological operators. Colorful retinal images are divided into red, green and blue channels. Green channel is preferred for segmentation on the account of including clear details about retinal vessels. Then, adaptive threshold with 5x5 Gaussian window is applied in order to obtain clean vessel geometry. In the next step, retinal image is sharpened and then, 3x3 wiener filter is applied to it. After wiener filter, some noise in the image decreases but retinal image pixels soften. Therefore, Otsu thresholding is applied to softened images. Finally, morphological operation is performed on gray level images. The proposed method is implemented on test images in DRIVE database. The process time of our method is 0.7-0.8 second and it is faster than other methods. 95,61% accuracy, 85.096% sensitivity and 96.33% specificity rates are obtained. en_US
dc.description.sponsorship IEEE Turkey Sect, Karabuk Univ, Kutahya Dumlupinar Univ en_US
dc.identifier.isbn 978-1-5386-4184-2
dc.identifier.uri https://hdl.handle.net/20.500.13091/1128
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Biomedical Image Processing en_US
dc.subject Image Texture Analysis en_US
dc.subject Image Denoising en_US
dc.subject Image Edge Detection en_US
dc.subject Image Segmentation en_US
dc.subject Images en_US
dc.subject Extraction en_US
dc.title An Efficient Retinal Blood Vessel Segmentation Using Morphological Operations en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Ozturk, Saban/0000-0003-2371-8173
gdc.author.wosid Ozturk, Saban/ABI-3936-2020
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 38 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 32 en_US
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000467794200006
gdc.index.type WoS
gdc.virtual.author Özkaya, Umut
gdc.virtual.author Akdemir, Bayram
gdc.virtual.author Seyfi, Levent
gdc.wos.citedcount 4
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication b71ff576-49be-43e7-bc5e-69428299f3fa
relation.isAuthorOfPublication 2375e1fb-2683-410c-a8fa-f89ea6f042b3
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
An_Efficient_Retinal_Blood_Vessel_Segmentation_using_Morphological_Operations.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format