Thermogram Classification Using Deep Siamese Network for Neonatal Disease Detection With Limited Data
| dc.contributor.author | Ervural, Saim | |
| dc.contributor.author | Ceylan, Murat | |
| dc.date.accessioned | 2022-01-30T17:32:54Z | |
| dc.date.available | 2022-01-30T17:32:54Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Monitoring the body temperatures and evaluating the thermal asymmetry of newborns give an idea about neonatal diseases. Infrared thermography is a non-invasive, non-harmful, and non-contact modality that allows the monitoring of the body temperature distribution. Early diagnosis using a limited data set is extremely vital due to the high mortality rate in newborns and some difficulties in neonatal imaging. Thermography stands out as a useful tool in detecting neonatal diseases compared to other techniques. However, creating a thermogram database consisting of thousands of images from each class required by traditional artificial intelligence methods, is impossible due to the sensitivity of newborns. One of the meta-learning models that has recently gained success in applying limited data learning, especially one-shot, in various fields is Siamese neural networks. In this work, we perform a multi-class classification to provide pre-diagnosis to experts in disease detection using Siamese neural networks. By using two different optimisation techniques and data augmentation, critical diseases with only a few sample data are classified using the method tested in two- and three-class evaluation approaches. The results based on the disease type achieve 99.4% accuracy in infection diseases and 96.4% oesophageal atresia, 97.4% in intestinal atresia, and 94.02% in necrotising enterocolitis. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] | en_US |
| dc.description.sponsorship | This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). | en_US |
| dc.identifier.doi | 10.1080/17686733.2021.2010379 | |
| dc.identifier.issn | 1768-6733 | |
| dc.identifier.issn | 2116-7176 | |
| dc.identifier.scopus | 2-s2.0-85122016157 | |
| dc.identifier.uri | https://doi.org/10.1080/17686733.2021.2010379 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/1697 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.relation.ispartof | Quantitative Infrared Thermography Journal | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Disease Classification | en_US |
| dc.subject | Neonatal Intensive Care | en_US |
| dc.subject | One-Shot Learning | en_US |
| dc.subject | Siamese Neural Network | en_US |
| dc.subject | Thermal Imaging | en_US |
| dc.subject | Low-Birth-Weight | en_US |
| dc.subject | Infrared Thermography | en_US |
| dc.subject | Natural-History | en_US |
| dc.subject | System | en_US |
| dc.subject | Thermoregulation | en_US |
| dc.subject | Anomalies | en_US |
| dc.subject | Infants | en_US |
| dc.title | Thermogram Classification Using Deep Siamese Network for Neonatal Disease Detection With Limited Data | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57195215988 | |
| gdc.author.scopusid | 56276648900 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 330 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 312 | |
| gdc.description.volume | 19 | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4200453905 | |
| gdc.identifier.wos | WOS:000736036900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 2.7541143E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | System | |
| gdc.oaire.keywords | Siamese Neural Network | |
| gdc.oaire.keywords | Low-Birth-Weight | |
| gdc.oaire.keywords | Anomalies | |
| gdc.oaire.keywords | Thermoregulation | |
| gdc.oaire.keywords | Neonatal Intensive Care | |
| gdc.oaire.keywords | Disease Classification | |
| gdc.oaire.keywords | Thermal Imaging | |
| gdc.oaire.keywords | Infrared Thermography | |
| gdc.oaire.keywords | Natural-History | |
| gdc.oaire.keywords | One-Shot Learning | |
| gdc.oaire.keywords | Infants | |
| gdc.oaire.popularity | 6.2734284E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.23730007 | |
| gdc.openalex.normalizedpercentile | 0.79 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Ceylan, Murat | |
| gdc.wos.citedcount | 8 | |
| relation.isAuthorOfPublication | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced | |
| relation.isAuthorOfPublication.latestForDiscovery | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Thermogram classification using deep siamese network for neonatal disease detection with limited data.pdf
- Size:
- 3.24 MB
- Format:
- Adobe Portable Document Format
