Thermogram Classification Using Deep Siamese Network for Neonatal Disease Detection With Limited Data

dc.contributor.author Ervural, Saim
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2022-01-30T17:32:54Z
dc.date.available 2022-01-30T17:32:54Z
dc.date.issued 2022
dc.description.abstract Monitoring the body temperatures and evaluating the thermal asymmetry of newborns give an idea about neonatal diseases. Infrared thermography is a non-invasive, non-harmful, and non-contact modality that allows the monitoring of the body temperature distribution. Early diagnosis using a limited data set is extremely vital due to the high mortality rate in newborns and some difficulties in neonatal imaging. Thermography stands out as a useful tool in detecting neonatal diseases compared to other techniques. However, creating a thermogram database consisting of thousands of images from each class required by traditional artificial intelligence methods, is impossible due to the sensitivity of newborns. One of the meta-learning models that has recently gained success in applying limited data learning, especially one-shot, in various fields is Siamese neural networks. In this work, we perform a multi-class classification to provide pre-diagnosis to experts in disease detection using Siamese neural networks. By using two different optimisation techniques and data augmentation, critical diseases with only a few sample data are classified using the method tested in two- and three-class evaluation approaches. The results based on the disease type achieve 99.4% accuracy in infection diseases and 96.4% oesophageal atresia, 97.4% in intestinal atresia, and 94.02% in necrotising enterocolitis. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). en_US
dc.identifier.doi 10.1080/17686733.2021.2010379
dc.identifier.issn 1768-6733
dc.identifier.issn 2116-7176
dc.identifier.scopus 2-s2.0-85122016157
dc.identifier.uri https://doi.org/10.1080/17686733.2021.2010379
dc.identifier.uri https://hdl.handle.net/20.500.13091/1697
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof Quantitative Infrared Thermography Journal en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Disease Classification en_US
dc.subject Neonatal Intensive Care en_US
dc.subject One-Shot Learning en_US
dc.subject Siamese Neural Network en_US
dc.subject Thermal Imaging en_US
dc.subject Low-Birth-Weight en_US
dc.subject Infrared Thermography en_US
dc.subject Natural-History en_US
dc.subject System en_US
dc.subject Thermoregulation en_US
dc.subject Anomalies en_US
dc.subject Infants en_US
dc.title Thermogram Classification Using Deep Siamese Network for Neonatal Disease Detection With Limited Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57195215988
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 330
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 312
gdc.description.volume 19
gdc.description.wosquality Q1
gdc.identifier.openalex W4200453905
gdc.identifier.wos WOS:000736036900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.7541143E-9
gdc.oaire.isgreen true
gdc.oaire.keywords System
gdc.oaire.keywords Siamese Neural Network
gdc.oaire.keywords Low-Birth-Weight
gdc.oaire.keywords Anomalies
gdc.oaire.keywords Thermoregulation
gdc.oaire.keywords Neonatal Intensive Care
gdc.oaire.keywords Disease Classification
gdc.oaire.keywords Thermal Imaging
gdc.oaire.keywords Infrared Thermography
gdc.oaire.keywords Natural-History
gdc.oaire.keywords One-Shot Learning
gdc.oaire.keywords Infants
gdc.oaire.popularity 6.2734284E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 1.23730007
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 4
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 8
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Thermogram classification using deep siamese network for neonatal disease detection with limited data.pdf
Size:
3.24 MB
Format:
Adobe Portable Document Format