Covid-19 Discrimination Framework for X-Ray Images by Considering Radiomics, Selective Information, Feature Ranking, and a Novel Hybrid Classifier

dc.contributor.author Koyuncu, Hasan
dc.contributor.author Barstuğan, Mücahid
dc.date.accessioned 2021-12-13T10:32:11Z
dc.date.available 2021-12-13T10:32:11Z
dc.date.issued 2021
dc.description.abstract In medical imaging procedures for the detection of coronavirus, apart from medical tests, approval of diagnosis has special significance. Imaging procedures are also useful for detecting the damage caused by COVID-19. Chest X-ray imaging is frequently used to diagnose COVID-19 and different pneumonias. This paper presents a task-specific framework to detect coronavirus in X-ray images. Binary classification of three different labels (healthy, bacterial pneumonia, and COVID-19) was performed on two differentiated data sets in which corona is stated as positive. First-order statistics, gray level co-occurrence matrix, gray level run length matrix, and gray level size zone matrix were analyzed to form fifteen sub-data sets and to ascertain the necessary radiomics. Two normalization methods are compared to make the data meaningful. Furthermore, five feature ranking approaches (Bhattacharyya, entropy, Roc, t-test, and Wilcoxon) are mentioned to provide necessary information to a state-of-the-art classifier based on Gauss-map-based chaotic particle swarm optimization and neural networks. The proposed framework was designed according to the analyses about radiomics, normalization approaches, and filter-based feature ranking methods. In experiments, seven metrics were evaluated to objectively determine the results: accuracy, area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, g-mean, precision, and f-measure. The proposed framework showed promising scores on two X-ray-based data sets, especially with the accuracy and area under the ROC curve rates exceeding 99% for the classification of coronavirus vs. others. en_US
dc.description.sponsorship Coordinatorship of Konya Technical University's Scientific Research Projects en_US
dc.description.sponsorship This work is supported by the Coordinatorship of Konya Technical University's Scientific Research Projects. en_US
dc.identifier.doi 10.1016/j.image.2021.116359
dc.identifier.issn 0923-5965
dc.identifier.issn 1879-2677
dc.identifier.scopus 2-s2.0-85108876168
dc.identifier.uri https://doi.org/10.1016/j.image.2021.116359
dc.identifier.uri https://hdl.handle.net/20.500.13091/937
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof SIGNAL PROCESSING-IMAGE COMMUNICATION en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Binary categorization en_US
dc.subject Chaotic en_US
dc.subject Coronavirus en_US
dc.subject Framework design en_US
dc.subject Hybrid classifier en_US
dc.subject Optimization en_US
dc.title Covid-19 Discrimination Framework for X-Ray Images by Considering Radiomics, Selective Information, Feature Ranking, and a Novel Hybrid Classifier en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Hasan/0000-0003-4541-8833
gdc.author.scopusid 55884277600
gdc.author.scopusid 57200139642
gdc.author.wosid Koyuncu, Hasan/C-2203-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 116359
gdc.description.volume 97 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3176259774
gdc.identifier.pmid 34219966
gdc.identifier.wos WOS:000674425600003
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.2632628E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Article
gdc.oaire.popularity 1.0416442E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.85595011
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 9
gdc.plumx.crossrefcites 9
gdc.plumx.facebookshareslikecount 24
gdc.plumx.mendeley 29
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.virtual.author Koyuncu, Hasan
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 9
relation.isAuthorOfPublication cb007ba5-2c13-4205-a2bf-53ae58be8fce
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery cb007ba5-2c13-4205-a2bf-53ae58be8fce

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S092359652100165X-main.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format