Residual Lstm Layered Cnn for Classification of Gastrointestinal Tract Diseases

dc.contributor.author Öztürk, Şaban
dc.contributor.author Özkaya, Umut
dc.date.accessioned 2021-12-13T10:34:47Z
dc.date.available 2021-12-13T10:34:47Z
dc.date.issued 2021
dc.description.abstract nowadays, considering the number of patients per specialist doctor, the size of the need for automatic medical image analysis methods can be understood. These systems, which are very advantageous compared to manual systems both in terms of cost and time, benefit from artificial intelligence (AI). AI mechanisms that mimic the decision-making process of a specialist increase their diagnosis performance day by day, depending on technological developments. In this study, an AI method is proposed to effectively classify Gastrointestinal (GI) Tract Image datasets containing a small number of labeled data. The proposed AI method uses the convolutional neural network (CNN) architecture, which is accepted as the most successful automatic classification method of today, as a backbone. According to our approach, a shallowly trained CNN architecture needs to be supported by a strong classifier to classify unbalanced datasets robustly. For this purpose, the features in each pooling layer in the CNN architecture are transmitted to an LSTM layer. A classification is made by combining all LSTM layers. All experiments are carried out using AlexNet, GoogLeNet, and ResNet to evaluate the contribution of the proposed residual LSTM structure fairly. Besides, three different experiments are carried out with 2000, 4000, and 6000 samples to determine the effect of sample number change on the proposed method. The performance of the proposed method is higher than other state-of-the-art methods. en_US
dc.identifier.doi 10.1016/j.jbi.2020.103638
dc.identifier.issn 1532-0464
dc.identifier.issn 1532-0480
dc.identifier.scopus 2-s2.0-85097741848
dc.identifier.uri https://doi.org/10.1016/j.jbi.2020.103638
dc.identifier.uri https://hdl.handle.net/20.500.13091/1168
dc.language.iso en en_US
dc.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en_US
dc.relation.ispartof JOURNAL OF BIOMEDICAL INFORMATICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Colorectal cancer en_US
dc.subject Gastrointestinal tract en_US
dc.subject CNN en_US
dc.subject LSTM en_US
dc.subject Transfer learning en_US
dc.title Residual Lstm Layered Cnn for Classification of Gastrointestinal Tract Diseases en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ozturk, Saban/0000-0003-2371-8173
gdc.author.scopusid 57191953654
gdc.author.scopusid 57191610477
gdc.author.wosid Ozturk, Saban/ABI-3936-2020
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 103638
gdc.description.volume 113 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3109469672
gdc.identifier.pmid 33271341
gdc.identifier.wos WOS:000615920800007
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 65.0
gdc.oaire.influence 7.1245214E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Gastrointestinal Tract
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Humans
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.popularity 6.51232E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 7.16576788
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 70
gdc.plumx.crossrefcites 81
gdc.plumx.mendeley 90
gdc.plumx.pubmedcites 20
gdc.plumx.scopuscites 99
gdc.scopus.citedcount 98
gdc.virtual.author Özkaya, Umut
gdc.wos.citedcount 71
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1532046420302677-main.pdf
Size:
5.13 MB
Format:
Adobe Portable Document Format