A Cnn-Based Novel Solution for Determining the Survival Status of Heart Failure Patients With Clinical Record Data: Numeric To Image

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Sabancı, Kadir
dc.contributor.author Durdu, Akif
dc.date.accessioned 2021-12-13T10:19:52Z
dc.date.available 2021-12-13T10:19:52Z
dc.date.issued 2021
dc.description.abstract The aim of this study is to effectively evaluate numerical data, which are frequently encountered in the medical field, with popular deep learning-based Convolutional Neural Network (CNN) models. Heart failure is a common disease worldwide and it is very important to identify patients with a high survival rate and whose condition will deteriorate. A heart failure dataset consisting of numerical values only, needs to be converted into image data for analysis using the advantages of CNN. For this, first all raw data are normalized, then each normalized feature is placed in a region in the grid image. Thus, images with different brightness regions are obtained according to the numerical value of each feature. After the data augmentation step, these images are trained with five different CNN models (GoogleNet, MobileNet v2, ResNet18, ResNet50 and ResNet101) and classified. The highest accuracy of 95.13 % is obtained with the ResNet18 model and this accuracy is superior to studies using previous numerical raw data. The success proves the applicability of the proposed method and shows that numerical data in different fields can be easily classified with CNN models. en_US
dc.identifier.doi 10.1016/j.bspc.2021.102716
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85105515023
dc.identifier.uri https://doi.org/10.1016/j.bspc.2021.102716
dc.identifier.uri https://hdl.handle.net/20.500.13091/156
dc.language.iso en en_US
dc.publisher ELSEVIER SCI LTD en_US
dc.relation.ispartof BIOMEDICAL SIGNAL PROCESSING AND CONTROL en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional Neural Network en_US
dc.subject Deep Learning en_US
dc.subject Heart Failure en_US
dc.subject Numeric-To-Image en_US
dc.subject Disease en_US
dc.subject Update en_US
dc.title A Cnn-Based Novel Solution for Determining the Survival Status of Heart Failure Patients With Clinical Record Data: Numeric To Image en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ASLAN, Muhammet Fatih/0000-0001-7549-0137
gdc.author.scopusid 57205362915
gdc.author.scopusid 56394515400
gdc.author.scopusid 55364612200
gdc.author.wosid Aslan, Muhammet Fatih/V-8019-2017
gdc.author.wosid Durdu, Akif/C-5294-2019
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 102716
gdc.description.volume 68 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3162960056
gdc.identifier.wos WOS:000670367800010
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 32.0
gdc.oaire.influence 4.273304E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.0506506E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 9.92590874
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 34
gdc.plumx.crossrefcites 36
gdc.plumx.mendeley 45
gdc.plumx.scopuscites 36
gdc.scopus.citedcount 36
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 30
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S174680942100313X-main.pdf
Size:
3.58 MB
Format:
Adobe Portable Document Format