A Deep Learning Ensemble Approach for X-Ray Image Classification
| dc.contributor.author | Esme, Engin | |
| dc.contributor.author | Kıran, Mustafa Servet | |
| dc.date.accessioned | 2024-10-10T16:05:54Z | |
| dc.date.available | 2024-10-10T16:05:54Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | The application of deep learning-based intelligent systems for X-ray imaging in various settings, including transportation, customs inspections, and public security, to identify hidden or prohibited objects are discussed in this study. In busy environments, x-ray inspections face challenges due to time limitations and a lack of qualified personnel. Deep learning algorithms can automate the imaging process, enhancing object detection and improving safety. This study uses a dataset of 5094 x-ray images of laptops with hidden foreign circuits and normal ones, training 11 deep learning algorithms with the 10-fold cross-validation method. The predictions of deep learning models selected based on the 70% threshold value have been combined using a meta-learner. ShuffleNet has the highest individual performance with 83.56%, followed by InceptionV3 at 81.30%, Darknet19 at 78.92%, DenseNet201 at 77.70% and Xception at 71.26%. Combining these models into an ensemble achieved a remarkable classification success rate of 85.97%, exceeding the performance of any individual model. The ensemble learning approach provides a more stable prediction output, reducing standard deviation among folds as well. This research highlights the potential for safer and more effective X-ray inspections through advanced machine learning techniques. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkiye [122E024] | en_US |
| dc.description.sponsorship | This study has been supported by The Scientific and Technological Research Council of Turkiye under Grant 122E024. The authors thank the council for the institutional supports. | en_US |
| dc.identifier.doi | 10.36306/konjes.1424329 | |
| dc.identifier.issn | 2667-8055 | |
| dc.identifier.issn | 2147-9364 | |
| dc.identifier.uri | https://doi.org/10.36306/konjes.1424329 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1264104 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/6366 | |
| dc.language.iso | en | en_US |
| dc.publisher | Konya Teknik Univ | en_US |
| dc.relation.ispartof | Konya Journal of Engineering Sciences | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Ensemble Learning | en_US |
| dc.subject | Object Classification | en_US |
| dc.subject | -Ray | en_US |
| dc.title | A Deep Learning Ensemble Approach for X-Ray Image Classification | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Esme, Engin; Kiran, Mustafa Servet] Konya Tech Univ, Engn & Nat Sci Fac, Software Engn Dept, Konya, Turkiye | en_US |
| gdc.description.endpage | 713 | |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 700 | |
| gdc.description.volume | 12 | en_US |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W4402114579 | |
| gdc.identifier.trdizinid | 1264104 | |
| gdc.identifier.wos | WOS:001312999000008 | |
| gdc.index.type | WoS | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Elektronik | |
| gdc.oaire.keywords | Deep Learning;Ensemble Learning;Object Classification;X-Ray | |
| gdc.oaire.keywords | Electronics | |
| gdc.oaire.popularity | 2.3737945E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.16 | |
| gdc.opencitations.count | 0 | |
| gdc.virtual.author | Eşme, Engin | |
| gdc.virtual.author | Kıran, Mustafa Servet | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6 | |
| relation.isAuthorOfPublication | 1b4c0009-61df-4135-a8d5-ed32324e2787 | |
| relation.isAuthorOfPublication.latestForDiscovery | c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6 |
