A Deep Learning Ensemble Approach for X-Ray Image Classification

dc.contributor.author Esme, Engin
dc.contributor.author Kıran, Mustafa Servet
dc.date.accessioned 2024-10-10T16:05:54Z
dc.date.available 2024-10-10T16:05:54Z
dc.date.issued 2024
dc.description.abstract The application of deep learning-based intelligent systems for X-ray imaging in various settings, including transportation, customs inspections, and public security, to identify hidden or prohibited objects are discussed in this study. In busy environments, x-ray inspections face challenges due to time limitations and a lack of qualified personnel. Deep learning algorithms can automate the imaging process, enhancing object detection and improving safety. This study uses a dataset of 5094 x-ray images of laptops with hidden foreign circuits and normal ones, training 11 deep learning algorithms with the 10-fold cross-validation method. The predictions of deep learning models selected based on the 70% threshold value have been combined using a meta-learner. ShuffleNet has the highest individual performance with 83.56%, followed by InceptionV3 at 81.30%, Darknet19 at 78.92%, DenseNet201 at 77.70% and Xception at 71.26%. Combining these models into an ensemble achieved a remarkable classification success rate of 85.97%, exceeding the performance of any individual model. The ensemble learning approach provides a more stable prediction output, reducing standard deviation among folds as well. This research highlights the potential for safer and more effective X-ray inspections through advanced machine learning techniques. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkiye [122E024] en_US
dc.description.sponsorship This study has been supported by The Scientific and Technological Research Council of Turkiye under Grant 122E024. The authors thank the council for the institutional supports. en_US
dc.identifier.doi 10.36306/konjes.1424329
dc.identifier.issn 2667-8055
dc.identifier.issn 2147-9364
dc.identifier.uri https://doi.org/10.36306/konjes.1424329
dc.identifier.uri https://search.trdizin.gov.tr/tr/yayin/detay/1264104
dc.identifier.uri https://hdl.handle.net/20.500.13091/6366
dc.language.iso en en_US
dc.publisher Konya Teknik Univ en_US
dc.relation.ispartof Konya Journal of Engineering Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Ensemble Learning en_US
dc.subject Object Classification en_US
dc.subject -Ray en_US
dc.title A Deep Learning Ensemble Approach for X-Ray Image Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Esme, Engin; Kiran, Mustafa Servet] Konya Tech Univ, Engn & Nat Sci Fac, Software Engn Dept, Konya, Turkiye en_US
gdc.description.endpage 713
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 700
gdc.description.volume 12 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4402114579
gdc.identifier.trdizinid 1264104
gdc.identifier.wos WOS:001312999000008
gdc.index.type WoS
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Elektronik
gdc.oaire.keywords Deep Learning;Ensemble Learning;Object Classification;X-Ray
gdc.oaire.keywords Electronics
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.16
gdc.opencitations.count 0
gdc.virtual.author Eşme, Engin
gdc.virtual.author Kıran, Mustafa Servet
gdc.wos.citedcount 0
relation.isAuthorOfPublication c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6
relation.isAuthorOfPublication 1b4c0009-61df-4135-a8d5-ed32324e2787
relation.isAuthorOfPublication.latestForDiscovery c5d1c3d6-4f52-4ee3-bf9a-581fe29780e6

Files