Comparison Between Ssa and Sso Algorithm Inspired in the Behavior of the Social Spider for Constrained Optimization

dc.contributor.author Baş, Emine
dc.contributor.author Ülker, Erkan
dc.date.accessioned 2021-12-13T10:23:54Z
dc.date.available 2021-12-13T10:23:54Z
dc.date.issued 2021
dc.description.abstract The heuristic algorithms are often used to find solutions to real complex world problems. In this paper, the Social Spider Algorithm (SSA) and Social Spider Optimization (SSO) which are heuristic algorithms created upon spider behaviors are considered. Performances of both algorithms are compared with each other from six different items. These are; fitness values of spider population which are obtained in different dimensions, number of candidate solution obtained in each iteration, the best value of candidate solutions obtained in each iteration, the worst value of candidate solutions obtained in each iteration, average fitness value of candidate solutions obtained in each iteration and running time of each iteration. Obtained results of SSA and SSO are applied to the Wilcoxon signed-rank test. Various unimodal, multimodal, and hybrid standard benchmark functions are studied to compare each other with the performance of SSO and SSA. Using these benchmark functions, performances of SSO and SSA are compared with well-known evolutionary and recently developed methods in the literature. Obtained results show that both heuristic algorithms have advantages to another from different aspects. Also, according to other algorithms have good performance. en_US
dc.identifier.doi 10.1007/s10462-021-10035-x
dc.identifier.issn 0269-2821
dc.identifier.issn 1573-7462
dc.identifier.scopus 2-s2.0-85109803305
dc.identifier.uri https://doi.org/10.1007/s10462-021-10035-x
dc.identifier.uri https://hdl.handle.net/20.500.13091/234
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof ARTIFICIAL INTELLIGENCE REVIEW en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Constrained Optimization en_US
dc.subject Heuristic en_US
dc.subject Social Spider en_US
dc.subject Spider Web en_US
dc.subject Ssa en_US
dc.subject Sso en_US
dc.subject Evolution Algorithm en_US
dc.subject Selection en_US
dc.title Comparison Between Ssa and Sso Algorithm Inspired in the Behavior of the Social Spider for Constrained Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id emine, BAS/0000-0003-4322-6010
gdc.author.scopusid 57213265310
gdc.author.scopusid 23393979800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 5631 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5583 en_US
gdc.description.volume 54 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3181601300
gdc.identifier.wos WOS:000670849000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.149428E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.486537E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.26993218
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 6
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Ülker, Erkan
gdc.virtual.author Baş, Emine
gdc.wos.citedcount 1
relation.isAuthorOfPublication ecd5c807-37b2-4c20-a42b-133bc166cbc0
relation.isAuthorOfPublication 86ee6f35-5a88-4538-8831-6b12c57a1ee9
relation.isAuthorOfPublication.latestForDiscovery ecd5c807-37b2-4c20-a42b-133bc166cbc0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s10462-021-10035-x.pdf
Size:
5.07 MB
Format:
Adobe Portable Document Format