Cnn-Based Transfer Learning-Bilstm Network: a Novel Approach for Covid-19 Infection Detection

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Ünlerşen, Muhammed Fahri
dc.contributor.author Sabancı, Kadir
dc.contributor.author Durdu, Akif
dc.date.accessioned 2021-12-13T10:19:52Z
dc.date.available 2021-12-13T10:19:52Z
dc.date.issued 2021
dc.description.abstract Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success. (C) 2020 Elsevier B.V. All rights reserved. en_US
dc.description.sponsorship RAC-LAB, Turkey en_US
dc.description.sponsorship Authors are grateful to the RAC-LAB, Turkey (www.rac-lab.com) for training and support. en_US
dc.identifier.doi 10.1016/j.asoc.2020.106912
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85096902763
dc.identifier.uri https://doi.org/10.1016/j.asoc.2020.106912
dc.identifier.uri https://hdl.handle.net/20.500.13091/157
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof APPLIED SOFT COMPUTING en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Alexnet en_US
dc.subject Bilstm en_US
dc.subject Covid-19 en_US
dc.subject Hybrid Architecture en_US
dc.subject Transfer Learning en_US
dc.subject Artificial-Intelligence en_US
dc.subject Bidirectional Lstm en_US
dc.subject Diagnosis en_US
dc.subject Algorithm en_US
dc.title Cnn-Based Transfer Learning-Bilstm Network: a Novel Approach for Covid-19 Infection Detection en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id SABANCI, Kadir/0000-0003-0238-9606
gdc.author.scopusid 57205362915
gdc.author.scopusid 57194417303
gdc.author.scopusid 56394515400
gdc.author.scopusid 55364612200
gdc.author.wosid SABANCI, Kadir/AAK-5215-2021
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C2
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 106912
gdc.description.volume 98 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3099905444
gdc.identifier.pmid 33230395
gdc.identifier.wos WOS:000603366000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 259.0
gdc.oaire.influence 1.8913422E-8
gdc.oaire.isgreen true
gdc.oaire.keywords Software
gdc.oaire.keywords Article
gdc.oaire.popularity 2.4458066E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 33.81739579
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 262
gdc.plumx.crossrefcites 283
gdc.plumx.facebookshareslikecount 8
gdc.plumx.mendeley 356
gdc.plumx.pubmedcites 109
gdc.plumx.scopuscites 313
gdc.scopus.citedcount 311
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 237
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494620308504-main.pdf
Size:
3.1 MB
Format:
Adobe Portable Document Format