Prediction of Diabetes Mellitus by Using Gradient Boosting Classification

dc.contributor.author Nusrat, Fatema
dc.contributor.author Uzbaş, Betül
dc.contributor.author Baykan, Ömer Kaan
dc.date.accessioned 2023-01-08T19:04:20Z
dc.date.available 2023-01-08T19:04:20Z
dc.date.issued 2020
dc.description.abstract Diabetes has become a pervasive and endemic health problem worldwide. It is a chronic disease and also life-threatening. It can cause health problems in many organs such as the heart, kidneys, eyes, nerves, and blood vessels. To reduce the fatality rate from diabetes, early prevention techniques are needed. Nowadays, machine learning techniques are used to predict or detect different life-threatening diseases like cancer, diabetes, heart diseases, thyroid, etc. In this study, a prediction model of diabetes mellitus was presented using the Pima Indian dataset. Three different machine learning techniques that Decision Tree (DT), Random Forest (RF) and, Gradient Boosting (GB) algorithm were used to predict diabetes mellitus and the performance analysis was performed. Confusion matrix, accuracy, F1 score, precision, recall, Cohen’s kappa were evaluated and also a ROC curve was plotted. Out of the three techniques, the best results have been achieved with GB. en_US
dc.identifier.doi 10.31590/ejosat.803504
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.803504
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1135912
dc.identifier.uri https://hdl.handle.net/20.500.13091/3258
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Diabetes en_US
dc.subject Gradient Boosting en_US
dc.subject Machine Learning Diyabet en_US
dc.subject Gradyan Arttırma en_US
dc.subject Makina Öğrenmesi en_US
dc.title Prediction of Diabetes Mellitus by Using Gradient Boosting Classification en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Nusrat, Fatema
gdc.author.institutional Uzbaş, Betül
gdc.author.institutional Baykan, Ömer Kaan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 272 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 268 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3091795490
gdc.identifier.trdizinid 1135912
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6655071E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Diabetes;Gradient Boosting;Machine Learning
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords Diyabet;Gradyan Arttırma;Makina Öğrenmesi
gdc.oaire.popularity 4.4233084E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.05815443
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 2
gdc.plumx.mendeley 16
gdc.virtual.author Uzbaş, Betül
gdc.virtual.author Baykan, Ömer Kaan
relation.isAuthorOfPublication b37a91b2-acda-4cb4-9cb2-12392200749f
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery b37a91b2-acda-4cb4-9cb2-12392200749f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.31590-ejosat.803504-1321702.pdf
Size:
917.3 KB
Format:
Adobe Portable Document Format