Enhancing Signer-Independent Recognition of Isolated Sign Language Through Advanced Deep Learning Techniques and Feature Fusion

dc.contributor.author Akdağ, Ali
dc.contributor.author Baykan, Ömer Kaan
dc.date.accessioned 2024-06-01T08:58:11Z
dc.date.available 2024-06-01T08:58:11Z
dc.date.issued 2024
dc.description.abstract Sign Language Recognition (SLR) systems are crucial bridges facilitating communication between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies, while advancing, often grapple with challenges such as accurately capturing the dynamic and complex nature of sign language, which includes both manual and non-manual elements like facial expressions and body movements. These systems sometimes fall short in environments with different backgrounds or lighting conditions, hindering their practical applicability and robustness. This study introduces an innovative approach to isolated sign language word recognition using a novel deep learning model that combines the strengths of both residual three-dimensional (R3D) and temporally separated (R(2+1)D) convolutional blocks. The R3(2+1)D-SLR network model demonstrates a superior ability to capture the intricate spatial and temporal features crucial for accurate sign recognition. Our system combines data from the signer's body, hands, and face, extracted using the R3(2+1)D-SLR model, and employs a Support Vector Machine (SVM) for classification. It demonstrates remarkable improvements in accuracy and robustness across various backgrounds by utilizing pose data over RGB data. With this pose-based approach, our proposed system achieved 94.52% and 98.53% test accuracy in signer-independent evaluations on the BosphorusSign22k-general and LSA64 datasets. en_US
dc.identifier.doi 10.3390/electronics13071188
dc.identifier.issn 2079-9292
dc.identifier.scopus 2-s2.0-85190250199
dc.identifier.uri https://doi.org/10.3390/electronics13071188
dc.identifier.uri https://hdl.handle.net/20.500.13091/5597
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Electronics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject sign language recognition en_US
dc.subject deep learning en_US
dc.subject feature fusion en_US
dc.subject Kernel en_US
dc.subject Classifier en_US
dc.title Enhancing Signer-Independent Recognition of Isolated Sign Language Through Advanced Deep Learning Techniques and Feature Fusion en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Baykan, Ömer Kaan
gdc.author.scopusid 57200269812
gdc.author.scopusid 23090480800
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.departmenttemp [Akdag, Ali] Tokat Gaziosmanpasa Univ, Dept Comp Engn, Tasliciftlik Campus, TR-60250 Tokat, Turkiye; [Baykan, Omer Kaan] Konya Tech Univ, Dept Comp Engn, TR-42250 Konya, Turkiye en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1188
gdc.description.volume 13 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4393160996
gdc.identifier.wos WOS:001201081800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.8418656E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.2103362E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 4.66482023
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Baykan, Ömer Kaan
gdc.wos.citedcount 4
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery aea7aa1f-27e5-46d6-9fb7-317283404e6b

Files