Enhancing Signer-Independent Recognition of Isolated Sign Language Through Advanced Deep Learning Techniques and Feature Fusion

No Thumbnail Available

Date

2024

Authors

Baykan, Ömer Kaan

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Sign Language Recognition (SLR) systems are crucial bridges facilitating communication between deaf or hard-of-hearing individuals and the hearing world. Existing SLR technologies, while advancing, often grapple with challenges such as accurately capturing the dynamic and complex nature of sign language, which includes both manual and non-manual elements like facial expressions and body movements. These systems sometimes fall short in environments with different backgrounds or lighting conditions, hindering their practical applicability and robustness. This study introduces an innovative approach to isolated sign language word recognition using a novel deep learning model that combines the strengths of both residual three-dimensional (R3D) and temporally separated (R(2+1)D) convolutional blocks. The R3(2+1)D-SLR network model demonstrates a superior ability to capture the intricate spatial and temporal features crucial for accurate sign recognition. Our system combines data from the signer's body, hands, and face, extracted using the R3(2+1)D-SLR model, and employs a Support Vector Machine (SVM) for classification. It demonstrates remarkable improvements in accuracy and robustness across various backgrounds by utilizing pose data over RGB data. With this pose-based approach, our proposed system achieved 94.52% and 98.53% test accuracy in signer-independent evaluations on the BosphorusSign22k-general and LSA64 datasets.

Description

Keywords

sign language recognition, deep learning, feature fusion, Kernel, Classifier

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Electronics

Volume

13

Issue

7

Start Page

1188

End Page

PlumX Metrics
Citations

Scopus : 6

Captures

Mendeley Readers : 19

SCOPUS™ Citations

6

checked on Feb 03, 2026

Web of Science™ Citations

4

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
4.66482023

Sustainable Development Goals

SDG data is not available