Evaluating the Attributes of Remote Sensing Image Pixels for Fast K-Means Clustering

dc.contributor.author Sağlam, Ali
dc.contributor.author Baykan, Nurdan Akhan
dc.date.accessioned 2021-12-13T10:38:36Z
dc.date.available 2021-12-13T10:38:36Z
dc.date.issued 2019
dc.description.abstract Clustering process is an important stage for many data mining applications. In this process, data elements are grouped according to their similarities. One of the most known clustering algorithms is the k-means algorithm. The algorithm initially requires the number of clusters as a parameter and runs iteratively. Many remote sensing image processing applications usually need the clustering stage like many image processing applications. Remote sensing images provide more information about the environments with the development of the multispectral sensor and laser technologies. In the dataset used in this paper, the infrared (IR) and the digital surface maps (DSM) are also supplied besides the red (R), the green (G), and the blue (B) color values of the pixels. However, remote sensing images come with very large sizes (6000 × 6000 pixels for each image in the dataset used). Clustering these large-size images using their multiattributes consumes too much time if it is used directly. In the literature, some studies are available to accelerate the k-means algorithm. One of them is the normalized distance value (NDV)-based fast k-means algorithm that benefits from the speed of the histogram-based approach and uses the multiattributes of the pixels. In this paper, we evaluated the effects of these attributes on the correctness of the clustering process with different color space transformations and distance measurements. We give the success results as peak signal-to-noise ratio and structural similarity index values using two different types of reference data (the source images and the ground-truth images) separately. Finally, we give the results based on accuracy measurement for evaluating both the success of the clustering outputs and the reliability of the NDV-based measurement methods presented in this paper. en_US
dc.identifier.doi 10.3906/elk-1901-190
dc.identifier.issn 1300-0632
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85076679853
dc.identifier.uri https://doi.org/10.3906/elk-1901-190
dc.identifier.uri https://app.trdizin.gov.tr/makale/TXpNM09URTJOZz09
dc.identifier.uri https://hdl.handle.net/20.500.13091/1215
dc.language.iso en en_US
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Bilimleri, Yapay Zeka en_US
dc.subject Bilgisayar Bilimleri, Sibernitik en_US
dc.subject Bilgisayar Bilimleri, Donanım ve Mimari en_US
dc.subject Bilgisayar Bilimleri, Bilgi Sistemleri en_US
dc.subject Bilgisayar Bilimleri, Yazılım Mühendisliği en_US
dc.subject Bilgisayar Bilimleri, Teori ve Metotlar en_US
dc.subject Mühendislik, Elektrik ve Elektronik en_US
dc.title Evaluating the Attributes of Remote Sensing Image Pixels for Fast K-Means Clustering en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 4202 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 4188 en_US
gdc.description.volume 27 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2991309534
gdc.identifier.trdizinid 337916
gdc.identifier.wos WOS:000506165400011
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.8215992E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.619901E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.75926068
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 4
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Baykan, Nurdan
gdc.virtual.author Sağlam, Ali
gdc.wos.citedcount 4
relation.isAuthorOfPublication 81dff1ca-db16-4103-b9cb-612ae1600b38
relation.isAuthorOfPublication 45ef6a25-79a1-4196-a4bf-92a1c2f56cea
relation.isAuthorOfPublication.latestForDiscovery 81dff1ca-db16-4103-b9cb-612ae1600b38

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
96776c54-63e5-4944-abca-cf7f52bf35a4.pdf
Size:
7.02 MB
Format:
Adobe Portable Document Format