Clustering Analysis Through Artificial Algae Algorithm

dc.contributor.author Türkoğlu, Bahaeddin
dc.contributor.author Uymaz, Sait Ali
dc.contributor.author Kaya, Ersin
dc.date.accessioned 2022-05-23T20:22:40Z
dc.date.available 2022-05-23T20:22:40Z
dc.date.issued 2022
dc.description.abstract Clustering analysis is widely used in many areas such as document grouping, image recognition, web search, business intelligence, bio information, and medicine. Many algorithms with different clustering approaches have been proposed in the literature. As they are easy and straightforward, partitioning methods such as K-means and K-medoids are the most commonly used algorithms. These are greedy methods that gradually improve clustering quality, highly dependent on initial parameters, and stuck a local optima. For this reason, in recent years, heuristic optimization methods have also been used in clustering. These heuristic methods can provide successful results because they have some mechanism to escape local optimums. In this study, for the first time, Artificial Algae Algorithm was used for clustering and compared with ten well-known bio-inspired metaheuristic clustering approaches. The proposed AAA clustering efficiency is evaluated using statistical analysis, convergence rate analysis, Wilcoxon's test, and different cluster evaluating measures ranking on 25 well-known public datasets with different difficulty levels (features and instances). The results demonstrate that the AAA clustering method provides more accurate solutions with a high convergence rate than other existing heuristic clustering techniques. en_US
dc.identifier.doi 10.1007/s13042-022-01518-6
dc.identifier.issn 1868-8071
dc.identifier.issn 1868-808X
dc.identifier.scopus 2-s2.0-85124820296
dc.identifier.uri https://doi.org/10.1007/s13042-022-01518-6
dc.identifier.uri https://hdl.handle.net/20.500.13091/2406
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof International Journal Of Machine Learning And Cybernetics en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data clustering en_US
dc.subject Clustering analysis en_US
dc.subject Artificial algae algorithm en_US
dc.subject Optimization Algorithm en_US
dc.subject Swarm Optimization en_US
dc.subject Firefly Algorithm en_US
dc.title Clustering Analysis Through Artificial Algae Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id KAYA, Ersin/0000-0001-5668-5078
gdc.author.id turkoglu, bahaeddin/0000-0003-0255-8422
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 1196 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1179 en_US
gdc.description.volume 13 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4213166675
gdc.identifier.wos WOS:000761639100001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 32.0
gdc.oaire.influence 3.8835837E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.6410861E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 6.46136107
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 27
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 31
gdc.scopus.citedcount 31
gdc.virtual.author Uymaz, Sait Ali
gdc.virtual.author Kaya, Ersin
gdc.wos.citedcount 25
relation.isAuthorOfPublication 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication.latestForDiscovery 83ffad2c-51a1-41f6-8ede-6d95ca8e9ac0

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13042-022-01518-6.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format