A New Approach for Automatic Sleep Staging: Siamese Neural Networks

dc.contributor.author Efe, Enes
dc.contributor.author Özsen, Seral
dc.date.accessioned 2022-01-30T17:32:54Z
dc.date.available 2022-01-30T17:32:54Z
dc.date.issued 2021
dc.description.abstract Sleep staging aims to gather biological signals during sleep, and categorize them by sleep stages: waking (W), non-REM-1 (N1), non-REM-2 (N2), non-REM-3 (N3), and REM (R). These stages are distributed irregularly, and their number varies with sleep quality. These features adversely affect the performance of automatic sleep staging systems. This paper adopts Siamese neural networks (SNNs) to solve the problem. During the network design, seven distance measurement methods, namely, Euclidean, Manhattan, Jaccard, Cosine, Canberra, Bray-Curtis, and Kullback Leibler divergence (KLD), were compared, revealing that Bray-Curtis (83.52%) and Cosine (84.94%) methods boast the best classification performance. The results of our approach are promising compared to traditional methods. en_US
dc.identifier.doi 10.18280/ts.380517
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85120484144
dc.identifier.uri https://doi.org/10.18280/ts.380517
dc.identifier.uri https://hdl.handle.net/20.500.13091/1696
dc.language.iso en en_US
dc.publisher Int Information & Engineering Technology Assoc en_US
dc.relation.ispartof Traitement Du Signal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Electroencephalogram (Eeg) en_US
dc.subject Siamese Neural Networks (Snns) en_US
dc.subject Automatic Sleep Staging en_US
dc.subject Convolutional Neural Networks (Cnns) en_US
dc.subject Classification en_US
dc.subject Data Augmentation en_US
dc.subject Wavelet Transform en_US
dc.subject Fault-Diagnosis en_US
dc.subject Eeg Signals en_US
dc.subject Channel en_US
dc.subject System en_US
dc.subject Identification en_US
dc.title A New Approach for Automatic Sleep Staging: Siamese Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57360455800
gdc.author.scopusid 22986589400
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 1430 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1423 en_US
gdc.description.volume 38 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3214737535
gdc.identifier.wos WOS:000725271300017
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.8215965E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.495851E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.80566834
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 5
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Özşen, Seral
gdc.wos.citedcount 4
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
38.05_17.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format