A Comprehensive Study of Parameters Analysis for Galactic Swarm Optimization

dc.contributor.author Kaya, Ersin
dc.date.accessioned 2021-12-13T10:30:01Z
dc.date.available 2021-12-13T10:30:01Z
dc.date.issued 2021
dc.description.abstract The galactic swarm optimization algorithm is a metaheuristic approach inspired by the motion and behavior of stars and galaxies. It is a framework that can use basic metaheuristic search methods. The method, which has a two-phase structure, performs exploration in the first phase and exploitation in the second phase. GSO tries to find the best solution in the search space by repeating these two phases for the specified number of times. In this study, the analysis of maximum epoch number (EPmax), the number of iterations in the first phase (L1), and the number of iterations in the second phase (L2) parameters, which determine the exploration and exploitation balance in the GSO method, was performed. 15 different parameter sets consisting of different values of these three parameters were created. The methods with 15 different parameter sets were performed at 30 independent runs. The methods were analyzed using 26 benchmark functions. The functions are tested in 30, 60, and 100 dimensions. Detailed results of the analysis were presented in the study, and the results obtained were also evaluated statistically. © 2021, Ismail Saritas. All rights reserved. en_US
dc.identifier.doi 10.18201/ijisae.2021167934
dc.identifier.issn 2147-6799
dc.identifier.scopus 2-s2.0-85103418186
dc.identifier.uri https://doi.org/10.18201/ijisae.2021167934
dc.identifier.uri https://hdl.handle.net/20.500.13091/806
dc.language.iso en en_US
dc.publisher Ismail Saritas en_US
dc.relation.ispartof International Journal of Intelligent Systems and Applications in Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Galactic swarm optimization en_US
dc.subject Metaheuristic optimization algorithm en_US
dc.subject Parameter analysis en_US
dc.title A Comprehensive Study of Parameters Analysis for Galactic Swarm Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36348487700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 37 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 28 en_US
gdc.description.volume 9 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3150769438
gdc.identifier.trdizinid 413365
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.5713938E-9
gdc.oaire.isgreen false
gdc.oaire.keywords parameter analysis
gdc.oaire.keywords galactic swarm optimization
gdc.oaire.keywords metaheuristic optimization algorithm
gdc.oaire.popularity 3.8167567E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.5644143
gdc.openalex.normalizedpercentile 0.72
gdc.opencitations.count 3
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Kaya, Ersin
relation.isAuthorOfPublication 6b459b99-eed9-45fb-b42f-50fbb4ee7090
relation.isAuthorOfPublication.latestForDiscovery 6b459b99-eed9-45fb-b42f-50fbb4ee7090

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
isaritas,+5+1152-Article+Text-4391-1-15-20210220.pdf
Size:
427.43 KB
Format:
Adobe Portable Document Format