A Hybrid Binary Grey Wolf Optimizer for Selection and Reduction of Reference Points With Extreme Learning Machine Approach on Local Gnss/Leveling Geoid Determination

dc.contributor.author Tütüncü, Kemal
dc.contributor.author Şahman, Mehmet Akif
dc.contributor.author Tuşat, Ekrem
dc.date.accessioned 2021-12-13T10:41:22Z
dc.date.available 2021-12-13T10:41:22Z
dc.date.issued 2021
dc.description.abstract Modeling and optimization from natural phenomena and observations of the physical earth is an extremely important issue. In the light of the developments in computer and artificial intelligence technologies, the applications of learning-based modeling and optimization techniques in all kinds of study fields are increasing. In this research, the applicability of four different state-of-the-art metaheuristic algorithms which are Particle swarm optimization (PSO), Tree-Seed Algorithm (TSA), Artificial Bee Colony (ABC) algorithm, and Grey Wolf Optimizer (GWO), in local GNSS/leveling geoid studies have been examined. The most suitable geoid model has been tried to be obtained by using different reference points via the well-known machine learning algorithms, Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), at the existing GNSS/leveling points in Burdur city of Turkey. In this study, eight different hybrid approaches are proposed by using each metaheuristic algorithm together with machine learning methods. By using these hybrid approaches, the model closest to the minimum number of reference points has been tried to be obtained. Furthermore, the performance of the hybrid approaches has been compared. According to the comparisons, the hybrid approach performed with GWO and ELM has achieved better results than other proposed hybrid approaches. As a result of the research, it has been seen that the most suitable local GNSS/Leveling geoid can be determined with a lower number of reference points in an appropriate distribution. (C) 2021 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.asoc.2021.107444
dc.identifier.issn 1568-4946
dc.identifier.issn 1872-9681
dc.identifier.scopus 2-s2.0-85105331542
dc.identifier.uri https://doi.org/10.1016/j.asoc.2021.107444
dc.identifier.uri https://hdl.handle.net/20.500.13091/1445
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof APPLIED SOFT COMPUTING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Gnss/Leveling Geoid en_US
dc.subject Modeling en_US
dc.subject Optimization en_US
dc.subject Grey Wolf Optimizer en_US
dc.subject Extreme Learning Machine en_US
dc.subject Artificial Bee Colony en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Tree-Seed Algorithm en_US
dc.subject Radial Basis Functions en_US
dc.subject Neural-Network en_US
dc.subject Model en_US
dc.subject Pso en_US
dc.subject Classification en_US
dc.subject Polynomials en_US
dc.subject Single en_US
dc.title A Hybrid Binary Grey Wolf Optimizer for Selection and Reduction of Reference Points With Extreme Learning Machine Approach on Local Gnss/Leveling Geoid Determination en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tutuncu, Kemal/0000-0002-3005-374X
gdc.author.scopusid 16029886700
gdc.author.scopusid 43361772800
gdc.author.scopusid 36161595400
gdc.author.wosid Tutuncu, Kemal/A-3000-2016
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 107444
gdc.description.volume 108 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3157933660
gdc.identifier.wos WOS:000670068500002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 2.995586E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.1701408E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.35949751
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 11
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.virtual.author Tuşat, Ekrem
gdc.wos.citedcount 14
relation.isAuthorOfPublication a088fe78-1b40-461f-9861-0e0a9bdc9cc6
relation.isAuthorOfPublication.latestForDiscovery a088fe78-1b40-461f-9861-0e0a9bdc9cc6

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494621003677-main.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format