Comparison of Time-Frequency Analyzes for a Sleep Staging Application With Cnn

dc.contributor.author Efe, Enes
dc.contributor.author Özşen, Seral
dc.date.accessioned 2022-05-23T20:22:42Z
dc.date.available 2022-05-23T20:22:42Z
dc.date.issued 2022
dc.description.abstract Sleep staging is the process of acquiring biological signals during sleep and marking them according to the stages of sleep. The procedure is performed by an experienced physician and takes more time. When this process is automated, the processing load will be reduced and the time required to identify disease will also be reduced. In this paper, 8 different transform methods for automatic sleep-staging based on convolutional neural networks (CNNs) were compared to classify sleep stages using single-channel electroencephalogram (EEG) signals. Five different labels were used to stage the sleep. These are Wake (W), NonREM-1 (N1), NonREM-2 (N2), NonREM-3 (N3), and REM (R). The classifications were done end-to-end without any hand-crafted features, ie without requiring any feature engineering. Time-Frequency components obtained by Short Time Fourier Transform, Discrete Wavelet Transform, Discrete Cosine Transform, Hilbert-Huang Transform, Discrete Gabor Transform, Fast Walsh-Hadamard Transform, Choi-Williams Distribution, and Wigner-Willie Distribution were classified with a supervised deep convolutional neural network to perform sleep staging. The discrete Cosine Transform-CNN method (DCT-CNN) showed the highest performance among the methods suggested in this paper with an F1 score of 89% and a value of 0.86 kappa. The findings of this study revealed that the transformation techniques utilized for the most accurate representation of input data are far superior to traditional approaches based on manual feature extraction, which acquires time, frequency, or nonlinear characteristics. The results of this article are expected to be useful to researchers in the development of low-cost, and easily portable devices. en_US
dc.identifier.doi 10.4028/p-2j5c10
dc.identifier.issn 2296-9837
dc.identifier.issn 2296-9845
dc.identifier.scopus 2-s2.0-85140088261
dc.identifier.uri https://doi.org/10.4028/p-2j5c10
dc.identifier.uri https://hdl.handle.net/20.500.13091/2426
dc.language.iso en en_US
dc.publisher Trans Tech Publications Ltd en_US
dc.relation.ispartof Journal Of Biomimetics Biomaterials And Biomedical Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sleep Staging en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Time-Frequency Methods en_US
dc.subject Empirical Mode Decomposition en_US
dc.subject Wavelet Transform en_US
dc.subject Eeg Signals en_US
dc.subject Agreement en_US
dc.title Comparison of Time-Frequency Analyzes for a Sleep Staging Application With Cnn en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id efe, enes/0000-0002-6136-6140
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 130 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 109 en_US
gdc.description.volume 55 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4220668766
gdc.identifier.wos WOS:000773993300010
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5262068E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5275837E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.16052091
gdc.openalex.normalizedpercentile 0.39
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Özşen, Seral
gdc.wos.citedcount 1
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
978-3-0357-3558-1_111.pdf
Size:
233.52 KB
Format:
Adobe Portable Document Format