Ann Estimation Model for Photogrammetry-Based Uav Flight Planning Optimisation

dc.contributor.author Makineci, Hasan Bilgehan
dc.contributor.author Karabörk, H.
dc.contributor.author Durdu, A.
dc.date.accessioned 2021-12-13T10:32:16Z
dc.date.available 2021-12-13T10:32:16Z
dc.date.issued 2022
dc.description.abstract Artificial intelligence (AI) is undergoing a ground-breaking period. Recently, AI affects almost every part of human life. Using AI in path planning for Unmanned Aerial Vehicle (UAV) attracts attention as a novel need. The inputs that form the base of UAV use in photogrammetry are UAV Type (UT), Ground Sampling Distance (GSD), Overlap Rates (OR), and Atmospheric Conditions (AC). Input parameters directly impact the UAV's Flight Time (FT) and Battery Status (BS). Weighting and optimizing these parameters are the main ideas of this study. The effects of input values (GSD, OR, UT, AC) on the outputs (BS and FT) were optimized using Artificial Neural Networks (ANN) in this study. For the analysis, results have been produced in which different training algorithms are preferred (Gradient Descent - GD - and Levenberg-Marquardt - LM). The GD algorithm has reached 77.65% accuracy in FT estimation and 80.91% estimation accuracy on normalized data on the BS. Then, the correlation between the produced model and the input parameters and the output parameters was determined, and the weights of the inputs were revealed. As a result, it was determined that the AC parameter has the most significant effect on BS and FT. Also, it has been identified that the normalization process has a considerable impact on optimization. en_US
dc.identifier.doi 10.1080/01431161.2021.1945159
dc.identifier.issn 0143-1161
dc.identifier.issn 1366-5901
dc.identifier.scopus 2-s2.0-85112082815
dc.identifier.uri https://doi.org/10.1080/01431161.2021.1945159
dc.identifier.uri https://hdl.handle.net/20.500.13091/983
dc.language.iso en en_US
dc.publisher TAYLOR & FRANCIS LTD en_US
dc.relation.ispartof INTERNATIONAL JOURNAL OF REMOTE SENSING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural-Network en_US
dc.subject Grey Wolf Optimizer en_US
dc.subject Drone Delivery en_US
dc.subject Path en_US
dc.subject Algorithm en_US
dc.subject Connectivity en_US
dc.subject Intelligence en_US
dc.subject Design en_US
dc.title Ann Estimation Model for Photogrammetry-Based Uav Flight Planning Optimisation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id MAKINECI, HASAN BILGEHAN/0000-0003-3627-5826
gdc.author.scopusid 57191188477
gdc.author.scopusid 24921546500
gdc.author.scopusid 55364612200
gdc.author.wosid Durdu, Akif/C-5294-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümü en_US
gdc.description.endpage 5708
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5686
gdc.description.volume 43
gdc.description.wosquality Q3
gdc.identifier.openalex W3191867365
gdc.identifier.wos WOS:000683205000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.7832305E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.66166E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.72599923
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 6
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 7
gdc.virtual.author Durdu, Akif
gdc.virtual.author Karabörk, Hakan
gdc.virtual.author Makineci, Hasan Bilgehan
gdc.wos.citedcount 8
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication 09ba143f-9ebf-440c-b190-f92d202bf8a9
relation.isAuthorOfPublication e9b325c4-ab4f-4305-bf8d-b7f4690879db
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ANN estimation model for photogrammetry based UAV flight planning optimisation.pdf
Size:
5.68 MB
Format:
Adobe Portable Document Format