Convolutional Neural Networks-Based Approach To Detect Neonatal Respiratory System Anomalies With Limited Thermal Image

dc.contributor.author Ervural, Saim
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2021-12-13T10:26:58Z
dc.date.available 2021-12-13T10:26:58Z
dc.date.issued 2021
dc.description.abstract Respiratory system diseases in neonates are thought-about major causes of neonatal morbidity and mortality, particularly in developing countries Early diagnosis and management of these diseases is very important. Thermal imaging stands out as a harmless non-ionizing method, and monitoring of temperature changes or thermal symmetry is used as a diagnostic tool in medicine. This study aims to detect respiratory abnormalities of neonates by artificial intelligence using limited thermal image. Convolutional neural network (CNN) models, although a powerful classification tool, require a balanced and large amount of data. The conditions that require the attention of infants in neonatal intensive care units make medical imaging difficult. It may not always be possible to have much data in the neonatal thermal image database, as in some real-world problems. To overcome this, an effective deep learning model and various data enhancement techniques were used and their effects on the classification results were observed. Neonates with respiratory abnormalities were evaluated in one class, with cardiovascular diseases and abdominal abnormalities were evaluated in the other class. As a result, when the number of images is increased by 4 times with data augmentation, it was determined that the classification accuracy increased from 84.5% to 90.9%. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). en_US
dc.identifier.doi 10.18280/ts.380222
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85107913115
dc.identifier.uri https://doi.org/10.18280/ts.380222
dc.identifier.uri https://hdl.handle.net/20.500.13091/580
dc.language.iso en en_US
dc.publisher INT INFORMATION & ENGINEERING TECHNOLOGY ASSOC en_US
dc.relation.ispartof TRAITEMENT DU SIGNAL en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject convolutional neural networks en_US
dc.subject data augmentation en_US
dc.subject infrared thermography en_US
dc.subject neonatal disease classification en_US
dc.subject prediagnosis system en_US
dc.subject respiratory system anomalies en_US
dc.subject INFRARED THERMOGRAPHY en_US
dc.title Convolutional Neural Networks-Based Approach To Detect Neonatal Respiratory System Anomalies With Limited Thermal Image en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57195215988
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 442 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 437 en_US
gdc.description.volume 38 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W3163224541
gdc.identifier.wos WOS:000652178700022
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.7183427E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Convolutional Neural Networks
gdc.oaire.keywords Neonatal Disease Classification
gdc.oaire.keywords Prediagnosis System
gdc.oaire.keywords Infrared Thermography
gdc.oaire.keywords Respiratory System Anomalies
gdc.oaire.keywords Data Augmentation
gdc.oaire.popularity 6.1601093E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 1.23811269
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 4
gdc.plumx.mendeley 51
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 7
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
38.02_22.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format