Pancreas Segmentation in Abdominal Ct Images With U-Net Model

dc.contributor.author Kurnaz, Ender
dc.contributor.author Ceylan, Rahime
dc.date.accessioned 2021-12-13T10:32:13Z
dc.date.available 2021-12-13T10:32:13Z
dc.date.issued 2020
dc.description 28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORK en_US
dc.description.abstract Pancreas is one of the most challenging organs in segmentation due to its different shape, position and size in each human being. With the development of machine learning, various deep learning methods are applied to segment the pancreas among organs in the abdominal region. In this study, pancreas segmentation is performed using the U-Net model, which is one of the convolutional neural networks (CNN) models. The results of pancreas segmentation performed on the Pancreas CT data set obtained from The Cancer Imaging Archive (TCIA) database containing computed tomography images of 82 patients are presented in detail. According to the results, Dice similarity coefficient and Jaccard similarity coefficient are found to be 0.78 and 0.66, respectively. en_US
dc.description.sponsorship Istanbul Medipol Univ en_US
dc.identifier.isbn 978-1-7281-7206-4
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85100296049
dc.identifier.uri https://hdl.handle.net/20.500.13091/957
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject pancreas en_US
dc.subject segmentation en_US
dc.subject u-net en_US
dc.subject deep learning en_US
dc.subject convolutional neural networks en_US
dc.title Pancreas Segmentation in Abdominal Ct Images With U-Net Model en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000653136100154
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 8
gdc.virtual.author Kurnaz, Ender
gdc.virtual.author Ceylan, Rahime
gdc.wos.citedcount 1
relation.isAuthorOfPublication a30b5e40-cd9e-4916-b806-af4b6f587f04
relation.isAuthorOfPublication db1f6849-0679-4c3f-8bb5-fcfb40beb531
relation.isAuthorOfPublication.latestForDiscovery a30b5e40-cd9e-4916-b806-af4b6f587f04

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Pancreas_Segmentation_in_Abdominal_CT_Images_with_U-Net_Model.pdf
Size:
325.88 KB
Format:
Adobe Portable Document Format