Classification of Sleep Stages Using Psg Recording Signals
| dc.contributor.author | Koca, Yasin | |
| dc.contributor.author | Özşen, Seral | |
| dc.contributor.author | Göğüş, Fatma Zehra | |
| dc.contributor.author | Tezel, Gülay | |
| dc.contributor.author | Küççüktürk, Serkan | |
| dc.contributor.author | Vatansev, Hülya | |
| dc.date.accessioned | 2023-03-03T13:35:01Z | |
| dc.date.available | 2023-03-03T13:35:01Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Automatic sleep staging is aimed within the scope of this paper. Sleep staging is a study by a sleep specialist. Since this process takes quite a long time and sleep is a method based on the knowledge and experience, it is inevitable for each person to show different results. For this, an automatic sleep staging method has been introduced. In the study, EEG (Electroencephalogram), EOG (Electrooculogram), EMG (Electromyogram) data recorded by PSG (Polysomnography) device for seven patients in Necmettin Erbakan University sleep laboratory were used. 81 different features were taken from the data in time and frequency environment. Also, PCA (Principal component analysis) and SFS (Sequential forward selection) feature selection methods were used. The classification success of the sleep phases in different machine learning methods was measured by using the received features. Linear D. (Linear Discriminant Analysis), Cubic SVM (Support vector machine), Weighted kNN (k nearest neighbor), Bagged Trees, ANN (Artificial neural network) were used as classifiers. System success was achieved with a 5 fold cross-validation method. Accuracy rates obtained were respectively 55.6%, 65.8%, 67%, 72.1%, and 69.1%. | en_US |
| dc.identifier.doi | 10.31590/ejosat.804709 | |
| dc.identifier.issn | 2148-2683 | |
| dc.identifier.uri | https://doi.org/10.31590/ejosat.804709 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1135937 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/3772 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Avrupa Bilim ve Teknoloji Dergisi | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | PSG | en_US |
| dc.subject | Sleep Stages | en_US |
| dc.subject | EEG | en_US |
| dc.subject | EOG | en_US |
| dc.subject | EMG | en_US |
| dc.subject | Bagged Trees PSG | en_US |
| dc.subject | Uyku Evreleme | en_US |
| dc.subject | EEG | en_US |
| dc.subject | EOG | en_US |
| dc.subject | EMG | en_US |
| dc.subject | Torbalı Ağaçlar | en_US |
| dc.title | Classification of Sleep Stages Using Psg Recording Signals | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KATÜN | en_US |
| gdc.description.departmenttemp | Konya Teknik Ünviversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Konya, Türkiye | en_US |
| gdc.description.endpage | 321 | en_US |
| gdc.description.issue | Ejosat Özel Sayı 2020 (ICCEES) | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 315 | en_US |
| gdc.description.volume | 0 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W3092580929 | |
| gdc.identifier.trdizinid | 1135937 | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | Mühendislik | |
| gdc.oaire.keywords | PSG;Sleep Stages;EEG;EOG;EMG;Bagged Trees | |
| gdc.oaire.popularity | 1.3503004E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.11 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 6 | |
| gdc.virtual.author | Özşen, Seral | |
| gdc.virtual.author | Solak, Fatma Zehra | |
| gdc.virtual.author | Tezel, Gülay | |
| relation.isAuthorOfPublication | 0a748abb-7416-473a-972c-70aa88a8d2a3 | |
| relation.isAuthorOfPublication | a143ef98-c9d0-4c3f-b785-24a88d05e33b | |
| relation.isAuthorOfPublication | fd306700-db85-40d5-be06-7e211c7c657f | |
| relation.isAuthorOfPublication.latestForDiscovery | 0a748abb-7416-473a-972c-70aa88a8d2a3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.31590-ejosat.804709-1325886.pdf
- Size:
- 868.41 KB
- Format:
- Adobe Portable Document Format
