Classification of Sleep Stages Using Psg Recording Signals

dc.contributor.author Koca, Yasin
dc.contributor.author Özşen, Seral
dc.contributor.author Göğüş, Fatma Zehra
dc.contributor.author Tezel, Gülay
dc.contributor.author Küççüktürk, Serkan
dc.contributor.author Vatansev, Hülya
dc.date.accessioned 2023-03-03T13:35:01Z
dc.date.available 2023-03-03T13:35:01Z
dc.date.issued 2020
dc.description.abstract Automatic sleep staging is aimed within the scope of this paper. Sleep staging is a study by a sleep specialist. Since this process takes quite a long time and sleep is a method based on the knowledge and experience, it is inevitable for each person to show different results. For this, an automatic sleep staging method has been introduced. In the study, EEG (Electroencephalogram), EOG (Electrooculogram), EMG (Electromyogram) data recorded by PSG (Polysomnography) device for seven patients in Necmettin Erbakan University sleep laboratory were used. 81 different features were taken from the data in time and frequency environment. Also, PCA (Principal component analysis) and SFS (Sequential forward selection) feature selection methods were used. The classification success of the sleep phases in different machine learning methods was measured by using the received features. Linear D. (Linear Discriminant Analysis), Cubic SVM (Support vector machine), Weighted kNN (k nearest neighbor), Bagged Trees, ANN (Artificial neural network) were used as classifiers. System success was achieved with a 5 fold cross-validation method. Accuracy rates obtained were respectively 55.6%, 65.8%, 67%, 72.1%, and 69.1%. en_US
dc.identifier.doi 10.31590/ejosat.804709
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.804709
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1135937
dc.identifier.uri https://hdl.handle.net/20.500.13091/3772
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject PSG en_US
dc.subject Sleep Stages en_US
dc.subject EEG en_US
dc.subject EOG en_US
dc.subject EMG en_US
dc.subject Bagged Trees PSG en_US
dc.subject Uyku Evreleme en_US
dc.subject EEG en_US
dc.subject EOG en_US
dc.subject EMG en_US
dc.subject Torbalı Ağaçlar en_US
dc.title Classification of Sleep Stages Using Psg Recording Signals en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KATÜN en_US
gdc.description.departmenttemp Konya Teknik Ünviversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Konya, Türkiye en_US
gdc.description.endpage 321 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman en_US
gdc.description.scopusquality N/A
gdc.description.startpage 315 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3092580929
gdc.identifier.trdizinid 1135937
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords PSG;Sleep Stages;EEG;EOG;EMG;Bagged Trees
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.11
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.virtual.author Özşen, Seral
gdc.virtual.author Solak, Fatma Zehra
gdc.virtual.author Tezel, Gülay
relation.isAuthorOfPublication 0a748abb-7416-473a-972c-70aa88a8d2a3
relation.isAuthorOfPublication a143ef98-c9d0-4c3f-b785-24a88d05e33b
relation.isAuthorOfPublication fd306700-db85-40d5-be06-7e211c7c657f
relation.isAuthorOfPublication.latestForDiscovery 0a748abb-7416-473a-972c-70aa88a8d2a3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.31590-ejosat.804709-1325886.pdf
Size:
868.41 KB
Format:
Adobe Portable Document Format