Data Mining in a Smart Traffic Light Control System Based on Image Processing and Knn Classification Algorithm
| dc.contributor.author | Yusefi, Abdullah | |
| dc.contributor.author | Altun, Adem Alpaslan | |
| dc.contributor.author | Sungur, Cemil | |
| dc.date.accessioned | 2023-03-03T13:35:01Z | |
| dc.date.available | 2023-03-03T13:35:01Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In today's modern world, communication, transportation and the movement of people and merchandises are important, and doing so in the shortest possible time is also essential and vital. In the past decade, due to the significant increase in the number of passengers and vehicles along with the capacity limitations of communication arrays, it is absolutely necessary to apply new technologies to intelligent traffic control and management. The intelligent transportation system (ITS) utilizes advanced technologies in the fields of information processing, telecommunications and electronic control to meet transportation needs. The purpose of these systems is to streamline traffic in important and sensitive routes, and in addition to providing traffic safety, information, timely traffic control and the use of optimal capacity of transport arteries. This paper presents new method for extracting traffic parameters associated with a signalized highway using image processing and data mining KNN classification algorithm. These parameters include the length of red light LED, the volume of passing vehicles and the volume of pedestrians passing the highways in the green phase. In what follows, a Data Mining Traffic Light Control System is introduced, which by receiving the three traffic parameters mentioned above, proceeds to optimize the traffic signal timing. At the end, a two-phase common highway is simulated in the MATLAB software environment, and the results of the image processing algorithms and the Data Mining Traffic Light Control System designed for it are evaluated. | en_US |
| dc.identifier.doi | 10.31590/ejosat.819762 | |
| dc.identifier.issn | 2148-2683 | |
| dc.identifier.uri | https://doi.org/10.31590/ejosat.819762 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/1136140 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/3777 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Avrupa Bilim ve Teknoloji Dergisi | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Two-phase Thresholding | en_US |
| dc.subject | Blocking | en_US |
| dc.subject | Data Mining | en_US |
| dc.subject | Traffic Simulation | en_US |
| dc.subject | Classification | en_US |
| dc.subject | Face Detection | en_US |
| dc.subject | Vehicle Detection | en_US |
| dc.subject | KNN classification | en_US |
| dc.title | Data Mining in a Smart Traffic Light Control System Based on Image Processing and Knn Classification Algorithm | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KATÜN | en_US |
| gdc.description.departmenttemp | Konya Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye | en_US |
| gdc.description.endpage | 465 | en_US |
| gdc.description.issue | Ejosat Özel Sayı 2020 (ICCEES) | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 461 | en_US |
| gdc.description.volume | 0 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W3095931074 | |
| gdc.identifier.trdizinid | 1136140 | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | Mühendislik | |
| gdc.oaire.keywords | İki aşamalı Eşikleme;Engelleme;Veri Madenciliği;Trafik Simülasyonu;Sınıflandırma;Yüz Algılama;Araç Algılama;KNN sınıflandırması | |
| gdc.oaire.keywords | Two-phase Thresholding;Blocking;Data Mining;Traffic Simulation;Classification;Face Detection;Vehicle Detection;KNN classification | |
| gdc.oaire.popularity | 1.3503004E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0104 chemical sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.26 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.virtual.author | Sungur, Cemil | |
| relation.isAuthorOfPublication | 5afbc8e5-34e4-41c7-9e7b-ee7412206e11 | |
| relation.isAuthorOfPublication.latestForDiscovery | 5afbc8e5-34e4-41c7-9e7b-ee7412206e11 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.31590-ejosat.819762-1375364.pdf
- Size:
- 920.25 KB
- Format:
- Adobe Portable Document Format
