Data Mining in a Smart Traffic Light Control System Based on Image Processing and Knn Classification Algorithm

dc.contributor.author Yusefi, Abdullah
dc.contributor.author Altun, Adem Alpaslan
dc.contributor.author Sungur, Cemil
dc.date.accessioned 2023-03-03T13:35:01Z
dc.date.available 2023-03-03T13:35:01Z
dc.date.issued 2020
dc.description.abstract In today's modern world, communication, transportation and the movement of people and merchandises are important, and doing so in the shortest possible time is also essential and vital. In the past decade, due to the significant increase in the number of passengers and vehicles along with the capacity limitations of communication arrays, it is absolutely necessary to apply new technologies to intelligent traffic control and management. The intelligent transportation system (ITS) utilizes advanced technologies in the fields of information processing, telecommunications and electronic control to meet transportation needs. The purpose of these systems is to streamline traffic in important and sensitive routes, and in addition to providing traffic safety, information, timely traffic control and the use of optimal capacity of transport arteries. This paper presents new method for extracting traffic parameters associated with a signalized highway using image processing and data mining KNN classification algorithm. These parameters include the length of red light LED, the volume of passing vehicles and the volume of pedestrians passing the highways in the green phase. In what follows, a Data Mining Traffic Light Control System is introduced, which by receiving the three traffic parameters mentioned above, proceeds to optimize the traffic signal timing. At the end, a two-phase common highway is simulated in the MATLAB software environment, and the results of the image processing algorithms and the Data Mining Traffic Light Control System designed for it are evaluated. en_US
dc.identifier.doi 10.31590/ejosat.819762
dc.identifier.issn 2148-2683
dc.identifier.uri https://doi.org/10.31590/ejosat.819762
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/1136140
dc.identifier.uri https://hdl.handle.net/20.500.13091/3777
dc.language.iso en en_US
dc.relation.ispartof Avrupa Bilim ve Teknoloji Dergisi en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Two-phase Thresholding en_US
dc.subject Blocking en_US
dc.subject Data Mining en_US
dc.subject Traffic Simulation en_US
dc.subject Classification en_US
dc.subject Face Detection en_US
dc.subject Vehicle Detection en_US
dc.subject KNN classification en_US
dc.title Data Mining in a Smart Traffic Light Control System Based on Image Processing and Knn Classification Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KATÜN en_US
gdc.description.departmenttemp Konya Teknik Üniversitesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye en_US
gdc.description.endpage 465 en_US
gdc.description.issue Ejosat Özel Sayı 2020 (ICCEES) en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman en_US
gdc.description.scopusquality N/A
gdc.description.startpage 461 en_US
gdc.description.volume 0 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3095931074
gdc.identifier.trdizinid 1136140
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords Mühendislik
gdc.oaire.keywords İki aşamalı Eşikleme;Engelleme;Veri Madenciliği;Trafik Simülasyonu;Sınıflandırma;Yüz Algılama;Araç Algılama;KNN sınıflandırması
gdc.oaire.keywords Two-phase Thresholding;Blocking;Data Mining;Traffic Simulation;Classification;Face Detection;Vehicle Detection;KNN classification
gdc.oaire.popularity 1.3503004E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0104 chemical sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.26
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.virtual.author Sungur, Cemil
relation.isAuthorOfPublication 5afbc8e5-34e4-41c7-9e7b-ee7412206e11
relation.isAuthorOfPublication.latestForDiscovery 5afbc8e5-34e4-41c7-9e7b-ee7412206e11

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.31590-ejosat.819762-1375364.pdf
Size:
920.25 KB
Format:
Adobe Portable Document Format