Pell-Lucas Series Approach for a Class of Fredholm-Type Delay Integro-Differential Equations With Variable Delays

dc.contributor.author Demir, Duygu Dönmez
dc.contributor.author Lukonde, Alpha Peter
dc.contributor.author Kürkçü, Ömür Kıvanç
dc.contributor.author Sezer, Mehmet
dc.date.accessioned 2021-12-13T10:26:48Z
dc.date.available 2021-12-13T10:26:48Z
dc.date.issued 2021
dc.description.abstract In this study, a Pell-Lucas matrix-collocation method is used to solve a class of Fredholm-type delay integro-differential equations with variable delays under initial conditions. The method involves the basic matrix structures gained from the expansions of the functions at collocation points. Therefore, it performs direct and immediate computation. To test its advantage on the applications, some numerical examples are evaluated. These examples show that the method enables highly accurate solutions and approximations. Besides, the accuracy of the solutions and the validity of the method are checked via the residual error analysis and the upper bound error, respectively. Finally, the numerical results, such as errors and computation time, are compared in the tables and figures. en_US
dc.identifier.doi 10.1007/s40096-020-00370-5
dc.identifier.issn 2008-1359
dc.identifier.issn 2251-7456
dc.identifier.scopus 2-s2.0-85119506063
dc.identifier.uri https://doi.org/10.1007/s40096-020-00370-5
dc.identifier.uri https://hdl.handle.net/20.500.13091/484
dc.language.iso en en_US
dc.publisher SPRINGER HEIDELBERG en_US
dc.relation.ispartof MATHEMATICAL SCIENCES en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Pell– en_US
dc.subject Lucas polynomials and series en_US
dc.subject Fredholm-type delay integro-differential equations en_US
dc.subject Matrix-collocation method en_US
dc.subject Variable delays en_US
dc.subject POLYNOMIAL SOLUTIONS en_US
dc.title Pell-Lucas Series Approach for a Class of Fredholm-Type Delay Integro-Differential Equations With Variable Delays en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kurkcu, Omur Kivanc/0000-0002-3987-7171
gdc.author.wosid Kurkcu, Omur Kivanc/AAQ-4682-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.endpage 64 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 55 en_US
gdc.description.volume 15 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3127772024
gdc.identifier.wos WOS:000616040600002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 2.937488E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Integro-ordinary differential equations
gdc.oaire.keywords variable delays
gdc.oaire.keywords Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
gdc.oaire.keywords Fredholm-type delay integro-differential equations
gdc.oaire.keywords Pell-Lucas polynomials and series
gdc.oaire.keywords matrix-collocation method
gdc.oaire.keywords Fredholm integral equations
gdc.oaire.popularity 9.908231E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.09040702
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 11
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 13
gdc.virtual.author Kürkçü, Ömür Kıvanç
gdc.wos.citedcount 12
relation.isAuthorOfPublication 496ebac1-5a78-4ae4-8148-e9bc97c6af22
relation.isAuthorOfPublication.latestForDiscovery 496ebac1-5a78-4ae4-8148-e9bc97c6af22

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s40096-020-00370-5.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format