Automatic Detection of Power Quality Disturbance Using Convolutional Neural Network Structure With Gated Recurrent Unit

dc.contributor.author Yiğit, E.
dc.contributor.author Özkaya, U.
dc.contributor.author Öztürk, Ş.
dc.contributor.author Singh, D.
dc.contributor.author Gritli, H.
dc.date.accessioned 2021-12-13T10:41:30Z
dc.date.available 2021-12-13T10:41:30Z
dc.date.issued 2021
dc.description.abstract Power quality disturbance (PQD) is essential for devices consuming electricity and meeting today's energy trends. This study contains an effective artificial intelligence (AI) framework for analyzing single or composite defects in power quality. A convolutional neural network (CNN) architecture, which has an output powered by a gated recurrent unit (GRU), is designed for this purpose. The proposed framework first obtains a matrix using a short-time Fourier transform (STFT) of PQD signals. This matrix contains the representation of the signal in the time and frequency domains, suitable for CNN input. Features are automatically extracted from these matrices using the proposed CNN architecture without preprocessing. These features are classified using the GRU. The performance of the proposed framework is tested using a dataset containing a total of seven single and composite defects. The amount of noise in these examples varies between 20 and 50 dB. The performance of the proposed method is higher than current state-of-the-art methods. The proposed method obtained 98.44% ACC, 98.45% SEN, 99.74% SPE, 98.45% PRE, 98.45% F1-score, 98.19% MCC, and 93.64% kappa metric. A novel power quality disturbance (PQD) system has been proposed, and its application has been represented in our study. The proposed system could be used in the industry and factory. © 2021 Enes Yi?it et al. en_US
dc.identifier.doi 10.1155/2021/7917500
dc.identifier.issn 1574017X
dc.identifier.issn 1574-017X
dc.identifier.issn 1875-905X
dc.identifier.scopus 2-s2.0-85113838735
dc.identifier.uri https://doi.org/10.1155/2021/7917500
dc.identifier.uri https://hdl.handle.net/20.500.13091/1544
dc.language.iso en en_US
dc.publisher Hindawi Limited en_US
dc.relation.ispartof Mobile Information Systems en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Automatic Detection of Power Quality Disturbance Using Convolutional Neural Network Structure With Gated Recurrent Unit en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 16032674200
gdc.author.scopusid 57191610477
gdc.author.scopusid 57191953654
gdc.author.scopusid 57195923799
gdc.author.scopusid 48861558900
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 11
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.volume 2021 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3191576354
gdc.identifier.wos WOS:000796778500003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 26.0
gdc.oaire.influence 5.0934483E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 2.9326268E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 3.48389407
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 27
gdc.plumx.mendeley 25
gdc.plumx.scopuscites 36
gdc.scopus.citedcount 36
gdc.virtual.author Özkaya, Umut
gdc.wos.citedcount 25
relation.isAuthorOfPublication 04ccc400-06d6-4438-9f17-97fdca915bf4
relation.isAuthorOfPublication.latestForDiscovery 04ccc400-06d6-4438-9f17-97fdca915bf4

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
7917500.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format