A Comparison of Improved Nature-Inspired Algorithms for Optimal Power System Operation

dc.contributor.author Shehu, Gaddafi S.
dc.contributor.author Çetinkaya, Nurettin
dc.date.accessioned 2021-12-13T10:38:40Z
dc.date.available 2021-12-13T10:38:40Z
dc.date.issued 2018
dc.description.abstract The influencing factors associated with the efficient operation of power systems are minimum fuel cost and losses in the transmission line. Optimal Power Dispatch (OPD) problem is treated to minimize instantaneous operating cost, incremental cost, and transmission line losses considering various network operating constraint. Newly developed Nature-inspired optimization algorithms approach are proposed in this analysis with robust parameter selections. The results of most popular Genetic Algorithm (GA) and based on swarm behavior Particle Swarm Optimization (PSO) are compared with four Nature-inspired metaheuristic algorithms of Cuckoo Search (CS), Bat Algorithm (BA), Flower Pollination Algorithm (FPA), and Firefly Algorithm (FA). The quadratic cost function of power generation and penalty function to account for inequality constraints on dependent variables are added for solving OPD problem. A common algorithms evaluation parameters such as population size and generation limit are designated on an equal scale. Explicit parameters for each algorithm are tuned properly for optimal operations. The algorithms are tested on IEEE-26 and IEEE-30 system. Analysis Outcomes obtained showcase the efficiency of each algorithms parametric turning improvement. en_US
dc.description.sponsorship TUBITAK TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) en_US
dc.description.sponsorship I will like to acknowledge the support of TUBITAK Turkey. en_US
dc.identifier.issn 1454-8658
dc.identifier.scopus 2-s2.0-85063072705
dc.identifier.uri https://hdl.handle.net/20.500.13091/1288
dc.language.iso en en_US
dc.publisher ROMANIAN SOC CONTROL TECH INFORMATICS en_US
dc.relation.ispartof CONTROL ENGINEERING AND APPLIED INFORMATICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fuel Cost en_US
dc.subject Nature-Inspired Optimization en_US
dc.subject Optimal Power Dispatch en_US
dc.subject Parametric Turning en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Reactive Power en_US
dc.subject Bat Algorithm en_US
dc.subject Dispatch en_US
dc.title A Comparison of Improved Nature-Inspired Algorithms for Optimal Power System Operation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Sani Shehu, Gaddafi/0000-0002-2721-9964
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 59 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 50 en_US
gdc.description.volume 20 en_US
gdc.description.wosquality Q4
gdc.identifier.wos WOS:000456636800006
gdc.index.type WoS
gdc.index.type Scopus
gdc.scopus.citedcount 3
gdc.virtual.author Çetinkaya, Nurettin
gdc.wos.citedcount 2
relation.isAuthorOfPublication fa2ce062-2c2c-4404-92f7-9e50092bf335
relation.isAuthorOfPublication.latestForDiscovery fa2ce062-2c2c-4404-92f7-9e50092bf335

Files