Haycam: a Novel Visual Explanation for Deep Convolutional Neural Networks

dc.contributor.author Örnek, Ahmet H.
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2023-03-03T13:32:24Z
dc.date.available 2023-03-03T13:32:24Z
dc.date.issued 2022
dc.description.abstract Explaining the decision mechanism of Deep Convolutional Neural Networks (CNNs) is a new and challenging area because of the Black Box nature of CNN's. Class Activation Mapping (CAM) as a visual explainable method is used to highlight important regions of input images by using classification gradients. The lack of the current methods is to use all of the filters in the last convolutional layer which causes scattered and unfocused activation mapping. HayCAMas a novel visualization method provides better activation mapping and therefore better localization by using dimension reduction. It has been shown with mask detection use case that input images are fed into the CNN model and bounding boxes are drawn over the generated activation maps (i.e. weakly-supervised object detection) by three different CAM methods. IoU values are obtained as 0.1922 for GradCAM, 0.2472 for GradCAM++, 0.3386 for EigenCAM, and 0.3487 for the proposed HayCAM. The results show that HayCAM achieves the best activation mapping with dimension reduction. en_US
dc.description.sponsorship Huawei Turkey RD Center en_US
dc.description.sponsorship This study was supported by Huawei Turkey R&D Center. en_US
dc.identifier.doi 10.18280/ts.390529
dc.identifier.issn 0765-0019
dc.identifier.issn 1958-5608
dc.identifier.scopus 2-s2.0-85150222892
dc.identifier.uri https://doi.org/10.18280/ts.390529
dc.identifier.uri https://hdl.handle.net/20.500.13091/3669
dc.language.iso en en_US
dc.publisher Int Information & Engineering Technology Assoc en_US
dc.relation.ispartof Traitement Du Signal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject classification en_US
dc.subject class activation mapping en_US
dc.subject explainable artificial intelligence en_US
dc.subject visual explanation en_US
dc.subject weakly-supervised object detection en_US
dc.title Haycam: a Novel Visual Explanation for Deep Convolutional Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department KTÜN en_US
gdc.description.departmenttemp [Ornek, Ahmet H.] ARTMETA AI, TR-34173 Istanbul, Turkey; [Ornek, Ahmet H.; Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, TR-42130 Konya, Turkey en_US
gdc.description.endpage 1719 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1711 en_US
gdc.description.volume 39 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4311163811
gdc.identifier.wos WOS:000907630800022
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 3.013657E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.163186E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.99033441
gdc.openalex.normalizedpercentile 0.75
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 2
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
39.05_29.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format