Haycam: a Novel Visual Explanation for Deep Convolutional Neural Networks
| dc.contributor.author | Örnek, Ahmet H. | |
| dc.contributor.author | Ceylan, Murat | |
| dc.date.accessioned | 2023-03-03T13:32:24Z | |
| dc.date.available | 2023-03-03T13:32:24Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Explaining the decision mechanism of Deep Convolutional Neural Networks (CNNs) is a new and challenging area because of the Black Box nature of CNN's. Class Activation Mapping (CAM) as a visual explainable method is used to highlight important regions of input images by using classification gradients. The lack of the current methods is to use all of the filters in the last convolutional layer which causes scattered and unfocused activation mapping. HayCAMas a novel visualization method provides better activation mapping and therefore better localization by using dimension reduction. It has been shown with mask detection use case that input images are fed into the CNN model and bounding boxes are drawn over the generated activation maps (i.e. weakly-supervised object detection) by three different CAM methods. IoU values are obtained as 0.1922 for GradCAM, 0.2472 for GradCAM++, 0.3386 for EigenCAM, and 0.3487 for the proposed HayCAM. The results show that HayCAM achieves the best activation mapping with dimension reduction. | en_US |
| dc.description.sponsorship | Huawei Turkey RD Center | en_US |
| dc.description.sponsorship | This study was supported by Huawei Turkey R&D Center. | en_US |
| dc.identifier.doi | 10.18280/ts.390529 | |
| dc.identifier.issn | 0765-0019 | |
| dc.identifier.issn | 1958-5608 | |
| dc.identifier.scopus | 2-s2.0-85150222892 | |
| dc.identifier.uri | https://doi.org/10.18280/ts.390529 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/3669 | |
| dc.language.iso | en | en_US |
| dc.publisher | Int Information & Engineering Technology Assoc | en_US |
| dc.relation.ispartof | Traitement Du Signal | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | classification | en_US |
| dc.subject | class activation mapping | en_US |
| dc.subject | explainable artificial intelligence | en_US |
| dc.subject | visual explanation | en_US |
| dc.subject | weakly-supervised object detection | en_US |
| dc.title | Haycam: a Novel Visual Explanation for Deep Convolutional Neural Networks | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | KTÜN | en_US |
| gdc.description.departmenttemp | [Ornek, Ahmet H.] ARTMETA AI, TR-34173 Istanbul, Turkey; [Ornek, Ahmet H.; Ceylan, Murat] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, TR-42130 Konya, Turkey | en_US |
| gdc.description.endpage | 1719 | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Eleman | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 1711 | en_US |
| gdc.description.volume | 39 | en_US |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W4311163811 | |
| gdc.identifier.wos | WOS:000907630800022 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 7.0 | |
| gdc.oaire.influence | 3.013657E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 7.163186E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.99033441 | |
| gdc.openalex.normalizedpercentile | 0.75 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| gdc.virtual.author | Ceylan, Murat | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced | |
| relation.isAuthorOfPublication.latestForDiscovery | 3ddb550c-8d12-4840-a8d4-172ab9dc9ced |
Files
Original bundle
1 - 1 of 1
