Haycam: a Novel Visual Explanation for Deep Convolutional Neural Networks

Loading...
Thumbnail Image

Date

2022

Authors

Ceylan, Murat

Journal Title

Journal ISSN

Volume Title

Publisher

Int Information & Engineering Technology Assoc

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Explaining the decision mechanism of Deep Convolutional Neural Networks (CNNs) is a new and challenging area because of the Black Box nature of CNN's. Class Activation Mapping (CAM) as a visual explainable method is used to highlight important regions of input images by using classification gradients. The lack of the current methods is to use all of the filters in the last convolutional layer which causes scattered and unfocused activation mapping. HayCAMas a novel visualization method provides better activation mapping and therefore better localization by using dimension reduction. It has been shown with mask detection use case that input images are fed into the CNN model and bounding boxes are drawn over the generated activation maps (i.e. weakly-supervised object detection) by three different CAM methods. IoU values are obtained as 0.1922 for GradCAM, 0.2472 for GradCAM++, 0.3386 for EigenCAM, and 0.3487 for the proposed HayCAM. The results show that HayCAM achieves the best activation mapping with dimension reduction.

Description

Keywords

classification, class activation mapping, explainable artificial intelligence, visual explanation, weakly-supervised object detection

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q4

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Traitement Du Signal

Volume

39

Issue

5

Start Page

1711

End Page

1719
PlumX Metrics
Citations

Scopus : 6

Captures

Mendeley Readers : 8

SCOPUS™ Citations

6

checked on Feb 03, 2026

Web of Science™ Citations

2

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.99033441

Sustainable Development Goals

SDG data is not available