Covid-19 Isolation Control Proposal Via Uav and Ugv for Crowded Indoor Environments: Assistive Robots in the Shopping Malls
| dc.contributor.author | Aslan, Muhammet Fatih | |
| dc.contributor.author | Hasikin, Khairunnisa | |
| dc.contributor.author | Yusefi, Abdullah | |
| dc.contributor.author | Durdu, Akif | |
| dc.contributor.author | Sabancı, Kadir | |
| dc.contributor.author | Azizan, Muhammad Mokhzaini | |
| dc.date.accessioned | 2022-10-08T20:48:04Z | |
| dc.date.available | 2022-10-08T20:48:04Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible. | en_US |
| dc.identifier.doi | 10.3389/fpubh.2022.855994 | |
| dc.identifier.issn | 2296-2565 | |
| dc.identifier.scopus | 2-s2.0-85132610201 | |
| dc.identifier.uri | https://doi.org/10.3389/fpubh.2022.855994 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.13091/2893 | |
| dc.language.iso | en | en_US |
| dc.publisher | Frontiers Media Sa | en_US |
| dc.relation.ispartof | Frontiers In Public Health | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | COVID-19 | en_US |
| dc.subject | HOG | en_US |
| dc.subject | SegNet | en_US |
| dc.subject | semantic segmentation | en_US |
| dc.subject | Support Vector Machine | en_US |
| dc.subject | UAV | en_US |
| dc.subject | Pedestrian Detection | en_US |
| dc.title | Covid-19 Isolation Control Proposal Via Uav and Ugv for Crowded Indoor Environments: Assistive Robots in the Shopping Malls | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | HASIKIN, KHAIRUNNISA/0000-0002-0471-3820 | |
| gdc.author.institutional | Yusefi, Abdullah | |
| gdc.author.institutional | Durdu, Akif | |
| gdc.author.scopusid | 57205362915 | |
| gdc.author.scopusid | 26632954500 | |
| gdc.author.scopusid | 57221601191 | |
| gdc.author.scopusid | 55364612200 | |
| gdc.author.scopusid | 56394515400 | |
| gdc.author.scopusid | 57226769737 | |
| gdc.author.wosid | HASIKIN, KHAIRUNNISA/B-8780-2010 | |
| gdc.author.wosid | Aslan, Muhammet Fatih/V-8019-2017 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.volume | 10 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4281833171 | |
| gdc.identifier.pmid | 35734764 | |
| gdc.identifier.wos | WOS:000813216500001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 2.6479383E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Male | |
| gdc.oaire.keywords | Support Vector Machine | |
| gdc.oaire.keywords | UAV | |
| gdc.oaire.keywords | COVID-19 | |
| gdc.oaire.keywords | SegNet | |
| gdc.oaire.keywords | Robotics | |
| gdc.oaire.keywords | semantic segmentation | |
| gdc.oaire.keywords | 629 | |
| gdc.oaire.keywords | Hog | |
| gdc.oaire.keywords | HOG | |
| gdc.oaire.keywords | Artificial Intelligence | |
| gdc.oaire.keywords | RA0421 Public health. Hygiene. Preventive Medicine | |
| gdc.oaire.keywords | Humans | |
| gdc.oaire.keywords | Semantic Segmentation | |
| gdc.oaire.keywords | Female | |
| gdc.oaire.keywords | Public Health | |
| gdc.oaire.keywords | Public aspects of medicine | |
| gdc.oaire.keywords | RA1-1270 | |
| gdc.oaire.keywords | Covid-19 | |
| gdc.oaire.popularity | 5.637654E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 1.17149707 | |
| gdc.openalex.normalizedpercentile | 0.72 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.mendeley | 17 | |
| gdc.plumx.pubmedcites | 2 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.virtual.author | Durdu, Akif | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | 230d3f36-663e-4fae-8cdd-46940c9bafea | |
| relation.isAuthorOfPublication.latestForDiscovery | 230d3f36-663e-4fae-8cdd-46940c9bafea |
Files
Original bundle
1 - 1 of 1
