Covid-19 Isolation Control Proposal Via Uav and Ugv for Crowded Indoor Environments: Assistive Robots in the Shopping Malls

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Hasikin, Khairunnisa
dc.contributor.author Yusefi, Abdullah
dc.contributor.author Durdu, Akif
dc.contributor.author Sabancı, Kadir
dc.contributor.author Azizan, Muhammad Mokhzaini
dc.date.accessioned 2022-10-08T20:48:04Z
dc.date.available 2022-10-08T20:48:04Z
dc.date.issued 2022
dc.description.abstract Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible. en_US
dc.identifier.doi 10.3389/fpubh.2022.855994
dc.identifier.issn 2296-2565
dc.identifier.scopus 2-s2.0-85132610201
dc.identifier.uri https://doi.org/10.3389/fpubh.2022.855994
dc.identifier.uri https://hdl.handle.net/20.500.13091/2893
dc.language.iso en en_US
dc.publisher Frontiers Media Sa en_US
dc.relation.ispartof Frontiers In Public Health en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject COVID-19 en_US
dc.subject HOG en_US
dc.subject SegNet en_US
dc.subject semantic segmentation en_US
dc.subject Support Vector Machine en_US
dc.subject UAV en_US
dc.subject Pedestrian Detection en_US
dc.title Covid-19 Isolation Control Proposal Via Uav and Ugv for Crowded Indoor Environments: Assistive Robots in the Shopping Malls en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id HASIKIN, KHAIRUNNISA/0000-0002-0471-3820
gdc.author.institutional Yusefi, Abdullah
gdc.author.institutional Durdu, Akif
gdc.author.scopusid 57205362915
gdc.author.scopusid 26632954500
gdc.author.scopusid 57221601191
gdc.author.scopusid 55364612200
gdc.author.scopusid 56394515400
gdc.author.scopusid 57226769737
gdc.author.wosid HASIKIN, KHAIRUNNISA/B-8780-2010
gdc.author.wosid Aslan, Muhammet Fatih/V-8019-2017
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 10 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4281833171
gdc.identifier.pmid 35734764
gdc.identifier.wos WOS:000813216500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.6479383E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Male
gdc.oaire.keywords Support Vector Machine
gdc.oaire.keywords UAV
gdc.oaire.keywords COVID-19
gdc.oaire.keywords SegNet
gdc.oaire.keywords Robotics
gdc.oaire.keywords semantic segmentation
gdc.oaire.keywords 629
gdc.oaire.keywords Hog
gdc.oaire.keywords HOG
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords RA0421 Public health. Hygiene. Preventive Medicine
gdc.oaire.keywords Humans
gdc.oaire.keywords Semantic Segmentation
gdc.oaire.keywords Female
gdc.oaire.keywords Public Health
gdc.oaire.keywords Public aspects of medicine
gdc.oaire.keywords RA1-1270
gdc.oaire.keywords Covid-19
gdc.oaire.popularity 5.637654E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.collaboration International
gdc.openalex.fwci 1.17149707
gdc.openalex.normalizedpercentile 0.72
gdc.opencitations.count 5
gdc.plumx.mendeley 17
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 3
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fpubh-10-855994.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format