Segmentation of Retinal Blood Vessel Using Gabor Filter and Extreme Learning Machines

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Ceylan, Murat
dc.contributor.author Durdu, Akif
dc.date.accessioned 2021-12-13T10:19:52Z
dc.date.available 2021-12-13T10:19:52Z
dc.date.issued 2018
dc.description International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 28-30, 2018 -- Inonu Univ, Malatya, TURKEY en_US
dc.description.abstract The process of obtaining blood vessels from the retinal fundus images plays an important role in the detection of disease in the eye. Analysis of blood vessels provides preliminary information on the presence and treatment of glaucoma, retinopathy, etc. This is why such practices are important. In this study, firstly, features were extracted from color retinal images. Adaptive threshold, Gabor filter and Top-Hat transform were used to make the blood vessel more visible during the feature extraction phase. Subsequently, the acquired features were given as input to the extreme learning machine, and as a result, retinal blood vessel was obtained. At this stage, DRIVE database was used. Twenty colored retinal fundus images were used in the train phase. Thanks to the extreme learning machine, the training process has been carried out quickly (0.42 sec). A high accuracy rate is obtained as %94.59. en_US
dc.description.sponsorship Inonu Univ, Comp Sci Dept, IEEE Turkey Sect, Anatolian Sci en_US
dc.identifier.doi 10.1109/IDAP.2018.8620890
dc.identifier.isbn 978-1-5386-6878-8
dc.identifier.scopus 2-s2.0-85062526933
dc.identifier.uri https://doi.org/10.1109/IDAP.2018.8620890
dc.identifier.uri https://hdl.handle.net/20.500.13091/155
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature extraction en_US
dc.subject vessel segmentation en_US
dc.subject Extreme learning machine en_US
dc.subject Gabor filter en_US
dc.subject Top-Hat transform en_US
dc.subject IMAGES en_US
dc.title Segmentation of Retinal Blood Vessel Using Gabor Filter and Extreme Learning Machines en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Durdu, Akif/0000-0002-5611-2322
gdc.author.scopusid 57205362915
gdc.author.scopusid 56276648900
gdc.author.scopusid 55364612200
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.author.wosid Aslan, Muhammet Fatih/V-8019-2017
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W2912353437
gdc.identifier.wos WOS:000458717400167
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9736476E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.0977064E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.42163854
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 9
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 28
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.virtual.author Durdu, Akif
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 9
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Segmentation_of_Retinal_Blood_Vessel_Using_Gabor_Filter_and_Extreme_Learning_Machines.pdf
Size:
690.96 KB
Format:
Adobe Portable Document Format