A Tutorial: Mobile Robotics, Slam, Bayesian Filter, Keyframe Bundle Adjustment and Ros Applications

dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Durdu, Akif
dc.contributor.author Yusefi, A.
dc.contributor.author Sabancı, Kadir
dc.contributor.author Sungur, C.
dc.date.accessioned 2021-12-13T10:19:52Z
dc.date.available 2021-12-13T10:19:52Z
dc.date.issued 2021
dc.description.abstract Autonomous mobile robots, an important research topic today, are often developed for smart industrial environments where they interact with humans. For autonomous movement of a mobile robot in an unknown environment, mobile robots must solve three main problems; localization, mapping and path planning. Robust path planning depends on successful localization and mapping. Both problems can be overcome with Simultaneous Localization and Mapping (SLAM) techniques. Since sequential sensor information is required for SLAM, eliminating these sensor noises is crucial for the next measurement and prediction. Recursive Bayesian filter is a statistical method used for sequential state prediction. Therefore, it is an essential method for the autonomous mobile robots and SLAM techniques. This study deals with the relationship between SLAM and Bayes methods for autonomous robots. Additionally, keyframe Bundle Adjustment (BA) based SLAM, which includes state-of-art methods, is also investigated. SLAM is an active research area and new algorithms are constantly being developed to increase accuracy rates, so new researchers need to understand this issue with ease. This study is a detailed and easily understandable resource for new SLAM researchers. ROS (Robot Operating System)-based SLAM applications are also given for better understanding. In this way, the reader obtains the theoretical basis and application experience to develop alternative methods related to SLAM. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.description.sponsorship Authors are thankful to RAC-LAB (www.rac-lab.com) for providing the data.Conflict of Interest: The authors declare that they have no conflict of interest. en_US
dc.identifier.doi 10.1007/978-3-030-75472-3_7
dc.identifier.issn 1860949X
dc.identifier.scopus 2-s2.0-85111469935
dc.identifier.uri https://doi.org/10.1007/978-3-030-75472-3_7
dc.identifier.uri https://hdl.handle.net/20.500.13091/152
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Studies in Computational Intelligence en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bayes filter en_US
dc.subject ROS en_US
dc.subject SLAM en_US
dc.subject Tutorial en_US
dc.title A Tutorial: Mobile Robotics, Slam, Bayesian Filter, Keyframe Bundle Adjustment and Ros Applications en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.scopusid 57205362915
gdc.author.scopusid 55364612200
gdc.author.scopusid 57221601191
gdc.author.scopusid 56394515400
gdc.author.scopusid 24492409100
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::book::book part
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 269 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.scopusquality Q3
gdc.description.startpage 227 en_US
gdc.description.volume 962 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3198180808
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 9.0
gdc.oaire.influence 4.0934287E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.1588915E-8
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 10.76190474
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 9
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 11
gdc.virtual.author Sungur, Cemil
gdc.virtual.author Durdu, Akif
relation.isAuthorOfPublication 5afbc8e5-34e4-41c7-9e7b-ee7412206e11
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 5afbc8e5-34e4-41c7-9e7b-ee7412206e11

Files