Real-Time Traffic Signal Control With Swarm Optimization Methods

dc.contributor.author Çeltek, Seyit Alperen
dc.contributor.author Durdu, Akif
dc.contributor.author Ali, Muzamil Eltejani Mohammed
dc.date.accessioned 2021-12-13T10:24:04Z
dc.date.available 2021-12-13T10:24:04Z
dc.date.issued 2020
dc.description.abstract Real-time traffic signal control is the control methods that control the traffic signal according to the instant traffic situation. In this paper, it is suggested to optimize the traffic control problem with the swarm-based heuristic optimization algorithms. The proposed methods are tested with the real traffic data obtained from Kilis city in Turkey. The performance is evaluated in real-time via the SUMO traffic simulator. The obtained results are compared with the actual traffic measurement data, and the success of the proposed method is expressed numerically. Finally, it is proved that the particle swarm optimization algorithm and its variance algorithm could be used successfully to optimize the traffic signals control in real traffic. In this study, Social Learning-Particle Swarm Optimization is used as a traffic signal optimizer for the first time in the known literature. (C) 2020 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.measurement.2020.108206
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85087989900
dc.identifier.uri https://doi.org/10.1016/j.measurement.2020.108206
dc.identifier.uri https://hdl.handle.net/20.500.13091/349
dc.language.iso en en_US
dc.publisher ELSEVIER SCI LTD en_US
dc.relation.ispartof MEASUREMENT en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Traffic Signal Control en_US
dc.subject Real-Time Control en_US
dc.subject Heuristic Control en_US
dc.subject Particle Swarm Optimization en_US
dc.subject Particle Swarm en_US
dc.subject Algorithm en_US
dc.title Real-Time Traffic Signal Control With Swarm Optimization Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Celtek, Seyit Alperen/0000-0002-7097-2521
gdc.author.scopusid 57170848000
gdc.author.scopusid 55364612200
gdc.author.scopusid 57221004288
gdc.author.wosid Celtek, Seyit Alperen/AAK-3452-2021
gdc.author.wosid Durdu, Akif/AAQ-4344-2020
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 108206
gdc.description.volume 166 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3041789421
gdc.identifier.wos WOS:000577288400030
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 34.0
gdc.oaire.influence 6.3501084E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.8949598E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 6.15501403
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 52
gdc.plumx.crossrefcites 60
gdc.plumx.mendeley 67
gdc.plumx.scopuscites 67
gdc.scopus.citedcount 67
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 47
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0263224120307442-main.pdf
Size:
477.35 KB
Format:
Adobe Portable Document Format