Classification of Neonatal Diseases With Limited Thermal Image Data

dc.contributor.author Ervural, Saim
dc.contributor.author Ceylan, Murat
dc.date.accessioned 2021-12-13T10:26:58Z
dc.date.available 2021-12-13T10:26:58Z
dc.date.issued 2022
dc.description.abstract Evaluation of body temperature and thermal symmetry in neonates is important in monitoring health conditions and predicting potential risks. With thermography, which is a harmless and noncontact method, diseases in neonates can be detected at an early stage using appropriate artificial intelligence techniques. Medical imaging is limited due to neonates' sensitivity to the thermal environment. This study proposes a classification model for classification problems with limited data (specifically, neonatal diseases) using data augmentation and artificial intelligence methodology. In the study, a multi-class classification was performed by combining images produced by data augmentation and employing the ability of convolutional neural networks to learn important features from the images, with 4 classes ranging from 8 to 16 newborns in each class. That is, there are four classes: 34 neonatal with abdominal, cardiovascular, and pulmonary abnormalities and 10 neonatal undiagnosed (premature). The dataset was created by taking 20 images from each of the 44 neonates. To test the performance of the proposed method, six different data separation experiments were conducted. Although the best classification accuracy is 94%, the 89% value obtained in the experiment when the model was tested with image samples of babies that had not been used in training the model is more significant for the model. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [215E019] en_US
dc.description.sponsorship This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019). en_US
dc.identifier.doi 10.1007/s11042-021-11391-0
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.scopus 2-s2.0-85112599964
dc.identifier.uri https://doi.org/10.1007/s11042-021-11391-0
dc.identifier.uri https://hdl.handle.net/20.500.13091/581
dc.language.iso en en_US
dc.publisher SPRINGER en_US
dc.relation.ispartof MULTIMEDIA TOOLS AND APPLICATIONS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional Neural Network (Cnn) en_US
dc.subject Infrared Thermography (Irt) en_US
dc.subject Neonatal Diseases en_US
dc.subject Classification en_US
dc.subject Data Augmentation en_US
dc.subject Low-Birth-Weight en_US
dc.subject Infrared Thermography en_US
dc.subject Thermoregulation en_US
dc.subject Temperature en_US
dc.subject Infants en_US
dc.subject Experience en_US
dc.subject Newborns en_US
dc.subject System en_US
dc.subject Nec en_US
dc.subject Ct en_US
dc.title Classification of Neonatal Diseases With Limited Thermal Image Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id ervural, saim/0000-0003-4104-1928
gdc.author.scopusid 57195215988
gdc.author.scopusid 56276648900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 9275
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 9247
gdc.description.volume 81
gdc.description.wosquality Q2
gdc.identifier.openalex W3197951830
gdc.identifier.wos WOS:000682496300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.9678264E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Experience
gdc.oaire.keywords System
gdc.oaire.keywords Neonatal Diseases
gdc.oaire.keywords Temperature
gdc.oaire.keywords Nec
gdc.oaire.keywords Low-Birth-Weight
gdc.oaire.keywords Classification
gdc.oaire.keywords Data Augmentation
gdc.oaire.keywords Convolutional Neural Network (Cnn)
gdc.oaire.keywords Thermoregulation
gdc.oaire.keywords Infrared Thermography (Irt)
gdc.oaire.keywords Infrared Thermography
gdc.oaire.keywords Infants
gdc.oaire.keywords Newborns
gdc.oaire.keywords Ct
gdc.oaire.popularity 7.03046E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 0.61865004
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 3
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 13
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.virtual.author Ceylan, Murat
gdc.wos.citedcount 5
relation.isAuthorOfPublication 3ddb550c-8d12-4840-a8d4-172ab9dc9ced
relation.isAuthorOfPublication.latestForDiscovery 3ddb550c-8d12-4840-a8d4-172ab9dc9ced

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s11042-021-11391-0.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format