A Comprehensive Study of Brain Tumour Discrimination Using Phase Combinations, Feature Rankings, and Hybridised Classifiers

dc.contributor.author Koyuncu, Hasan
dc.contributor.author Barstuğan, Mücahid
dc.contributor.author Öziç, Muhammet Üsame
dc.date.accessioned 2021-12-13T10:32:11Z
dc.date.available 2021-12-13T10:32:11Z
dc.date.issued 2020
dc.description.abstract The binary categorisation of brain tumours is challenging owing to the complexities of tumours. These challenges arise because of the diversities between shape, size, and intensity features for identical types of tumours. Accordingly, framework designs should be optimised for two phenomena: feature analyses and classification. Based on the challenges and difficulty of the issue, limited information or studies exist that consider the binary classification of three-dimensional (3D) brain tumours. In this paper, the discrimination of high-grade glioma (HGG) and low-grade glioma (LGG) is accomplished by designing various frameworks based on 3D magnetic resonance imaging (3D MRI) data. Accordingly, diverse phase combinations, feature-ranking approaches, and hybrid classifiers are integrated. Feature analyses are performed to achieve remarkable performance using first-order statistics (FOS) by examining different phase combinations near the usage of single phases (T1c, FLAIR, T1, and T2) and by considering five feature-ranking approaches (Bhattacharyya, Entropy, Roc,ttest, and Wilcoxon) to detect the appropriate input to the classifier. Hybrid classifiers based on neural networks (NN) are considered due to their robustness and superiority with medical pattern classification. In this study, state-of-the-art optimisation methods are used to form the hybrid classifiers: dynamic weight particle swarm optimisation (DW-PSO), chaotic dynamic weight particle swarm optimisation (CDW-PSO), and Gauss-map-based chaotic particle-swarm optimisation (GM-CPSO). The integrated frameworks, including DW-PSO-NN, CDW-PSO-NN, and GM-CPSO-NN, are evaluated on the BraTS 2017 challenge dataset involving 210 HGG and 75 LGG samples. The 2-fold cross-validation test method and seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) are processed to evaluate the performance of frameworks efficiently. In experiments, the most effective framework is provided that uses FOS, data including three phase combinations, the Wilcoxon feature-ranking approach, and the GM-CPSO-NN method. Consequently, our framework achieved remarkable scores of 90.18% (accuracy), 85.62% (AUC), 95.24% (sensitivity), 76% (specificity), 85.08% (g-mean), 91.74% (precision), and 93.46% (f-measure) for HGG/LGG discrimination of 3D brain MRI data. en_US
dc.description.sponsorship Coordinatorship of Konya Technical University's Scientific Research Projects en_US
dc.description.sponsorship This work is supported by the Coordinatorship of Konya Technical University's Scientific Research Projects. en_US
dc.identifier.doi 10.1007/s11517-020-02273-y
dc.identifier.issn 0140-0118
dc.identifier.issn 1741-0444
dc.identifier.scopus 2-s2.0-85092013044
dc.identifier.uri https://doi.org/10.1007/s11517-020-02273-y
dc.identifier.uri https://hdl.handle.net/20.500.13091/939
dc.language.iso en en_US
dc.publisher SPRINGER HEIDELBERG en_US
dc.relation.ispartof MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Brain Tumour en_US
dc.subject Classification en_US
dc.subject Feature Ranking en_US
dc.subject Hybrid Classifier en_US
dc.subject Phase Combination en_US
dc.subject Optimisation en_US
dc.subject Feature-Selection en_US
dc.subject Classification en_US
dc.subject Cancer en_US
dc.subject Diagnosis en_US
dc.title A Comprehensive Study of Brain Tumour Discrimination Using Phase Combinations, Feature Rankings, and Hybridised Classifiers en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Hasan/0000-0003-4541-8833
gdc.author.scopusid 55884277600
gdc.author.scopusid 57200139642
gdc.author.scopusid 56246508200
gdc.author.wosid Koyuncu, Hasan/C-2203-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 2987 en_US
gdc.description.issue 12 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2971 en_US
gdc.description.volume 58 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3091225854
gdc.identifier.pmid 33006703
gdc.identifier.wos WOS:000574740300001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.3861058E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Brain Neoplasms
gdc.oaire.keywords Humans
gdc.oaire.keywords Neuroimaging
gdc.oaire.keywords Glioma
gdc.oaire.keywords Neural Networks, Computer
gdc.oaire.keywords Magnetic Resonance Imaging
gdc.oaire.popularity 1.0678555E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 1.13729111
gdc.openalex.normalizedpercentile 0.76
gdc.opencitations.count 11
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 9
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Koyuncu, Hasan
gdc.virtual.author Barstuğan, Mücahid
gdc.wos.citedcount 7
relation.isAuthorOfPublication cb007ba5-2c13-4205-a2bf-53ae58be8fce
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication.latestForDiscovery cb007ba5-2c13-4205-a2bf-53ae58be8fce

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s11517-020-02273-y.pdf
Size:
3.92 MB
Format:
Adobe Portable Document Format