A Directly Convergent Numerical Method Based on Orthoexponential Polynomials for Solving Integro-Differential Equations With Variable Coefficients and Infinite Boundary on Half-Line

dc.contributor.author Kürkçü, Ömür Kıvanç
dc.contributor.author Sezer, Mehmet
dc.date.accessioned 2021-12-13T10:32:13Z
dc.date.available 2021-12-13T10:32:13Z
dc.date.issued 2021
dc.description.abstract In this study, main concern is focused on numerically solving the integro-differentialdelay equations with variable coefficients and infinite boundary on half-line, proposing a matrix-collocation method based on the orthoexponential polynomials. The method is equipped with the collocation points and the hybridized matrix relations between the orthoexponential and Taylor polynomials, which enable us to convert an integral form with infinite boundary into a mathematical formulation. The method also directly establishes the verification of the existence and uniqueness of this integral form through a convergent result. In order to observe the validity of the method versus its computation limit, an error bound analysis is performed by using the upper bound of the orthoexponential polynomials. A computer module containing main infrastructure of the method is specifically designed and run for providing highly precise results. Thus, the numerical and graphical implementations are completely monitored in table and figures, respectively. Based on the comparisons and findings, one can state that the method is remarkable, dependable, and accurate for approaching the aforementioned equations. (C) 2020 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.cam.2020.113250
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-85094118897
dc.identifier.uri https://doi.org/10.1016/j.cam.2020.113250
dc.identifier.uri https://hdl.handle.net/20.500.13091/955
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Integro-differential equations en_US
dc.subject Delay arguments en_US
dc.subject Matrix-collocation method en_US
dc.subject Orthoexponential polynomials en_US
dc.subject Error bound analysis en_US
dc.subject Infinite boundary en_US
dc.title A Directly Convergent Numerical Method Based on Orthoexponential Polynomials for Solving Integro-Differential Equations With Variable Coefficients and Infinite Boundary on Half-Line en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kurkcu, Omur Kivanc/0000-0002-3987-7171
gdc.author.scopusid 57038964500
gdc.author.scopusid 8674094900
gdc.author.wosid Kurkcu, Omur Kivanc/AAQ-4682-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Mühendislik Temel Bilimleri Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 113250
gdc.description.volume 386 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3093119016
gdc.identifier.wos WOS:000597152400029
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.9113019E-9
gdc.oaire.isgreen false
gdc.oaire.keywords error bound analysis
gdc.oaire.keywords Integro-ordinary differential equations
gdc.oaire.keywords Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
gdc.oaire.keywords orthoexponential polynomials
gdc.oaire.keywords infinite boundary
gdc.oaire.keywords matrix-collocation method
gdc.oaire.keywords Numerical methods for integral equations
gdc.oaire.keywords integro-differential equations
gdc.oaire.keywords delay arguments
gdc.oaire.popularity 7.734386E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.32037866
gdc.openalex.normalizedpercentile 0.67
gdc.opencitations.count 8
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 8
gdc.scopus.citedcount 8
gdc.virtual.author Kürkçü, Ömür Kıvanç
gdc.wos.citedcount 6
relation.isAuthorOfPublication 496ebac1-5a78-4ae4-8148-e9bc97c6af22
relation.isAuthorOfPublication.latestForDiscovery 496ebac1-5a78-4ae4-8148-e9bc97c6af22

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0377042720305410-main.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format