Evaluation of the Relationship Between the Physical Properties and Capillary Water Absorption Values of Building Stones by Regression Analysis and Artificial Neural Networks

dc.contributor.author İnce, İsmail
dc.contributor.author Bozdağ, Ali
dc.contributor.author Barstuğan, Mücahid
dc.contributor.author Fener, Mustafa
dc.date.accessioned 2021-12-13T10:29:52Z
dc.date.available 2021-12-13T10:29:52Z
dc.date.issued 2021
dc.description.abstract The most important factor in the movement of groundwater or mineral precipitation in building stones is the capillary water absorption properties of the rock. Besides, capillary water absorption is one of the most important parameters in the degradation process of building stones. The determination of the capillary water absorption values of rocks is a very time-consuming and sensitive process. In this study, the capillary water absorption values of 100 different rock samples were predicted by simple regression (SR), multiple linear regression (MLR), and artificial neural network (ANN) method using physical properties (dry density, P-wave velocity, porosity, water absorption of weight). In the evaluation performed by the SR, although the correlation coefficients in the relationships between the physical and capillary water absorption properties of rocks varied between 0.676 and 0.911, it was observed that the values predicted from these relationships for the samples with high capillary water absorption (C > 200 g/m(2)/s(0.5)) were deviated from the experimental values. In the MLR analysis, the highest correlation coefficient was found to be (R-2 : 0.708). Among the physical properties used as input parameters in the ANN method, the dry density property indicated the best correlation coefficient in the training (R-2 : 0.9587) and testing (R-2 : 0.9603) results. Furthermore, it was determined that the approach developed with the ANN was more reliable in predicting capillary water absorption values. en_US
dc.identifier.doi 10.1016/j.jobe.2021.103055
dc.identifier.issn 2352-7102
dc.identifier.scopus 2-s2.0-85111695414
dc.identifier.uri https://doi.org/10.1016/j.jobe.2021.103055
dc.identifier.uri https://hdl.handle.net/20.500.13091/721
dc.language.iso en en_US
dc.publisher ELSEVIER en_US
dc.relation.ispartof JOURNAL OF BUILDING ENGINEERING en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Capillary Water Absorption en_US
dc.subject Physical Properties en_US
dc.subject Simple Regression en_US
dc.subject Multiple Linear Regressions en_US
dc.subject Artificial Neural Network en_US
dc.subject Rise en_US
dc.subject Kinetics en_US
dc.title Evaluation of the Relationship Between the Physical Properties and Capillary Water Absorption Values of Building Stones by Regression Analysis and Artificial Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 16555121900
gdc.author.scopusid 57211604468
gdc.author.scopusid 57200139642
gdc.author.scopusid 14522411400
gdc.author.wosid ince, ismail/AAA-3236-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Jeoloji Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 103055
gdc.description.volume 42 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3187427704
gdc.identifier.wos WOS:000689323300002
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.0243712E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 9.872458E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0105 earth and related environmental sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 3.43404492
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 10
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 24
gdc.plumx.scopuscites 17
gdc.scopus.citedcount 17
gdc.virtual.author Barstuğan, Mücahid
gdc.virtual.author İnce, İsmail
gdc.virtual.author Bozdağ, Ali
gdc.wos.citedcount 15
relation.isAuthorOfPublication 6aa50dd9-047a-4915-a080-f31da54482c6
relation.isAuthorOfPublication aaab0c06-ea61-47ae-a2ea-5444b260751d
relation.isAuthorOfPublication 2eea532f-efbd-4ac5-8377-b55902e6b61b
relation.isAuthorOfPublication.latestForDiscovery 6aa50dd9-047a-4915-a080-f31da54482c6

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S235271022100913X-main.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format