Key Drivers of Volatility in BISTt100 Firms Using Machine Learning Segmentation

dc.contributor.author Yildirim, Hasan Hüseyin
dc.contributor.author Akusta, Ahmet
dc.date.accessioned 2025-05-11T18:40:11Z
dc.date.available 2025-05-11T18:40:11Z
dc.date.issued 2025
dc.description.abstract This study conducts a comprehensive volatility analysis among firms listed on the BIST100 index using machine learning techniques and panel regression models. Focusing on the period from 2006 to 2023, the study excludes financial firms, resulting in a dataset of 46 companies. The methodology follows a two-step process: First, firms are clustered into low and high-volatility groups using Principal Component Analysis (PCA) and the K-means algorithm; second, panel regression models are applied to determine the financial ratios influencing stock price volatility. The Parkinson Volatility measure is used as the dependent variable, while independent variables include Return on Assets (ROA), Return on Equity (ROE), liquidity ratios, firm beta, and leverage ratios. Results indicate that firm beta has a statistically significant positive impact on volatility across all models, while the current ratio negatively affects volatility in the model 1. These findings provide valuable insights for investors and policymakers regarding risk management in the Turkish stock market. Applying machine learning and advanced econometric techniques adds to the literature on volatility forecasting and financial decision-making. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.36922/ijocta.1707
dc.identifier.issn 2146-0957
dc.identifier.issn 2146-5703
dc.identifier.scopus 2-s2.0-105012210788
dc.identifier.uri https://doi.org/10.36922/ijocta.1707
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1299339/key-drivers-of-volatility-in-bist100-firms-using-machine-learning-segmentation
dc.language.iso en en_US
dc.publisher Ramazan YAMAN en_US
dc.relation.ispartof International Journal of Optimization and Control – Theories & Applications – IJOCTA en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject BIST100 en_US
dc.subject Clustering Analysis en_US
dc.subject Parkinson Volatility en_US
dc.subject PCA en_US
dc.subject Stock Price Volatility en_US
dc.title Key Drivers of Volatility in BISTt100 Firms Using Machine Learning Segmentation en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36951948200
gdc.author.scopusid 59550863200
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp [Yildirim] Hasan Hüseyin, Department of Finance and Banking, Balikesir Üniversitesi, Balikesir, Turkey; [Akusta] Ahmet, Konya Technical University, Konya, Turkey en_US
gdc.description.endpage 201 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 183 en_US
gdc.description.volume 15 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W4407165979
gdc.identifier.trdizinid 1299339
gdc.identifier.wos WOS:001468633300009
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 11.01364221
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 3
gdc.virtual.author Akusta, Ahmet
gdc.wos.citedcount 3
relation.isAuthorOfPublication 0dae0322-7e0e-488f-8e26-c17e1dfe513e
relation.isAuthorOfPublication.latestForDiscovery 0dae0322-7e0e-488f-8e26-c17e1dfe513e

Files