The Ytu Dataset and Recurrent Neural Network Based Visual-Inertial Odometry

dc.contributor.author Gürtürk, Mert
dc.contributor.author Yusefi, Abdullah
dc.contributor.author Aslan, Muhammet Fatih
dc.contributor.author Soycan, Metin
dc.contributor.author Durdu, Akif
dc.contributor.author Masiero, Andrea
dc.date.accessioned 2021-12-13T10:29:48Z
dc.date.available 2021-12-13T10:29:48Z
dc.date.issued 2021
dc.description.abstract Visual Simultaneous Localization and Mapping (VSLAM) and Visual Odometry (VO) are fundamental problems to be properly tackled for enabling autonomous and effective movements of vehicles/robots supported by vision -based positioning systems. This study presents a publicly shared dataset for SLAM investigations: a dataset collected at the Yildiz Technical University (YTU) in an outdoor area by an acquisition system mounted on a terrestrial vehicle. The acquisition system includes two cameras, an inertial measurement unit, and two GPS receivers. All sensors have been calibrated and synchronized. To prove the effectiveness of the introduced dataset, this study also applies Visual Inertial Odometry (VIO) on the KITTI dataset. Also, this study proposes a new recurrent neural network-based VIO rather than just introducing a new dataset. In addition, the effectiveness of this proposed method is proven by comparing it with the state-of-the-arts ORB-SLAM2 and OKVIS methods. The experimental results show that the YTU dataset is robust enough to be used for benchmarking studies and the proposed deep learning-based VIO is more successful than the other two traditional methods. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); [FDK-2019-3593] en_US
dc.description.sponsorship This research was supported by the project number FDK-2019-3593, which was accepted by the Yildiz Technical University Scientific Research Projects Commission. Authors are grateful to the RAC-LAB ( www.rac-lab.com ) for training and support. The first author of this paper was also awarded '2214-A Abroad Research Scholarship' by The Scientific and Technological Research Council of Turkey (TUBITAK) and concluded her research at University of Florence. en_US
dc.identifier.doi 10.1016/j.measurement.2021.109878
dc.identifier.issn 0263-2241
dc.identifier.issn 1873-412X
dc.identifier.scopus 2-s2.0-85111871132
dc.identifier.uri https://doi.org/10.1016/j.measurement.2021.109878
dc.identifier.uri https://hdl.handle.net/20.500.13091/684
dc.language.iso en en_US
dc.publisher ELSEVIER SCI LTD en_US
dc.relation.ispartof MEASUREMENT en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Vio en_US
dc.subject Slam en_US
dc.subject Ytu Dataset en_US
dc.subject Versatile en_US
dc.subject Slam en_US
dc.title The Ytu Dataset and Recurrent Neural Network Based Visual-Inertial Odometry en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57226360527
gdc.author.scopusid 57221601191
gdc.author.scopusid 57205362915
gdc.author.scopusid 10339673300
gdc.author.scopusid 55364612200
gdc.author.scopusid 57198996466
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümü en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 109878
gdc.description.volume 184 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3190815851
gdc.identifier.wos WOS:000704866300003
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 3.1323661E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Deep learning; SLAM; VIO; YTU dataset
gdc.oaire.popularity 1.3565079E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 6.14467186
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 15
gdc.plumx.crossrefcites 15
gdc.plumx.facebookshareslikecount 98
gdc.plumx.mendeley 21
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.virtual.author Durdu, Akif
gdc.wos.citedcount 18
relation.isAuthorOfPublication 230d3f36-663e-4fae-8cdd-46940c9bafea
relation.isAuthorOfPublication.latestForDiscovery 230d3f36-663e-4fae-8cdd-46940c9bafea

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0263224121008198-main.pdf
Size:
6.44 MB
Format:
Adobe Portable Document Format