Distributed Fuzzy Permutation Flow Shop Scheduling Problem: a Bee Colony Algorithm

dc.contributor.author Baysal, M. Emin
dc.contributor.author Sarucan, A.
dc.contributor.author Büyüközkan, K.
dc.contributor.author Engin, O.
dc.date.accessioned 2021-12-13T10:26:53Z
dc.date.available 2021-12-13T10:26:53Z
dc.date.issued 2021
dc.description International Conference on Intelligent and Fuzzy Systems, INFUS 2020 -- 21 July 2020 through 23 July 2020 -- -- 242349 en_US
dc.description.abstract The distributed permutation flow shop scheduling problem is a subclass of the permutation flow shop scheduling problem. Distributed scheduling adopts multi-factory with permutation flow shop scheduling environment. At the distributed permutation flow shop scheduling, due to the human factors, the processing times of the jobs on the machines are not known exactly. Thus, in this study, the processing time of the jobs on machines are considered as a triangular fuzzy number. Also, the due dates of the jobs are considered as trapezoidal fuzzy numbers at this research. To solve the distributed fuzzy permutation flow shop scheduling problem with multi-objective an artificial bee colony algorithm is proposed. To the best of our knowledge, this is the first study to solve the distributed fuzzy permutation flow shop scheduling with an artificial bee colony algorithm. The proposed artificial bee colony algorithm is first calibrated on the distributed permutation flow shop scheduling problem. The results showed that the proposed artificial bee colony algorithm is an efficient solution technique for solving distributed fuzzy permutation flow shop scheduling problems. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.doi 10.1007/978-3-030-51156-2_167
dc.identifier.isbn 9783030511555
dc.identifier.issn 2194-5357
dc.identifier.scopus 2-s2.0-85088748877
dc.identifier.uri https://doi.org/10.1007/978-3-030-51156-2_167
dc.identifier.uri https://hdl.handle.net/20.500.13091/534
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Advances in Intelligent Systems and Computing en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial bee colony algorithm en_US
dc.subject Fuzzy distributed permutation flow shop en_US
dc.title Distributed Fuzzy Permutation Flow Shop Scheduling Problem: a Bee Colony Algorithm en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 56007700700
gdc.author.scopusid 54405086400
gdc.author.scopusid 55902625100
gdc.author.scopusid 55948252100
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 1446 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1440 en_US
gdc.description.volume 1197 AISC en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3041542247
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 5.0
gdc.oaire.influence 2.8109346E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.018195E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 3.38410897
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 6
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Engin, Orhan
gdc.virtual.author Sarucan, Ahmet
gdc.virtual.author Baysal, Mehmet Emin
relation.isAuthorOfPublication 40e3d4e9-243f-4b10-8413-a3db7bbf017c
relation.isAuthorOfPublication 30b38eab-12da-4082-86fb-8b406ecbc0d6
relation.isAuthorOfPublication e93117d5-3744-4733-90c9-b3035f5d2a1d
relation.isAuthorOfPublication.latestForDiscovery 40e3d4e9-243f-4b10-8413-a3db7bbf017c

Files