The Use of Machine Learning Method in Covid-19 Patient Management

dc.contributor.author Cebeci, Zübeyir
dc.contributor.author Baykan, Ömer Kaan
dc.contributor.author Coşkun, İlker
dc.contributor.author Çanakçı, Ebru
dc.date.accessioned 2025-01-10T20:54:47Z
dc.date.available 2025-01-10T20:54:47Z
dc.date.issued 2024
dc.description.abstract Aim: The COVID-19 pandemic, first originating in Wuhan, China in December 2019, has affected over 180 countries worldwide. The clinical spectrum of COVID-19 ranges from mild to severe pneumonia with acute respiratory distress syndrome. The sudden increase in COVID cases requiring hospitalization has made inpatient health institutions difficult to predict and manage. Machine learning models have been used to diagnose the disease, predict clinical course, and hospital stay. Materials and Methods: Data from 322 PCR-positive patients were analyzed, including demographics, comorbidities, laboratory values, and radiological results. Machine learning algorithms such as Logistic Regression, Support Vector Machine, Ensemble Methods, and K-Nearest Neighbor were used for classification. Results: Results showed that SVM provided the best classification performance. The model considered factors like age, gender, medical history, and test results to personalize treatment decisions. The study suggests that machine learning can improve patient care during the COVID-19 pandemic. Limitations include the need for validation with larger datasets from multiple centers. Conclusion: This study aimed to show whether machine learning techniques can be used to make decisions about the hospitalization of COVID-19 patients. en_US
dc.identifier.doi 10.5455/annalsmedres.2024.03.054
dc.identifier.issn 2636-7688
dc.identifier.uri https://doi.org/10.5455/annalsmedres.2024.03.054
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1282881/the-use-of-machine-learning-method-in-covid-19-patient-management
dc.identifier.uri https://hdl.handle.net/20.500.13091/9820
dc.language.iso en en_US
dc.relation.ispartof Annals of Medical Research en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title The Use of Machine Learning Method in Covid-19 Patient Management en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Konya Technical University en_US
gdc.description.departmenttemp ORDU ÜNİVERSİTESİ,KONYA TEKNİK ÜNİVERSİTESİ,ORDU ÜNİVERSİTESİ,ORDU ÜNİVERSİTESİ en_US
gdc.description.endpage 874 en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 871 en_US
gdc.description.volume 31 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4404840067
gdc.identifier.trdizinid 1282881
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.3737945E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.42
gdc.opencitations.count 0
gdc.virtual.author Baykan, Ömer Kaan
relation.isAuthorOfPublication aea7aa1f-27e5-46d6-9fb7-317283404e6b
relation.isAuthorOfPublication.latestForDiscovery aea7aa1f-27e5-46d6-9fb7-317283404e6b

Files